Experimental Investigation of Residual Ultimate Strength of Damaged Metallic Pipelines

Author(s):  
Jie Cai ◽  
Xiaoli Jiang ◽  
Gabriel Lodewijks ◽  
Zhiyong Pei ◽  
Ling Zhu

The ultimate strength of metallic pipelines will be inevitably affected when they have suffered from structural damage. The present experiments aim to investigate the residual ultimate bending strength of metallic pipes with structural damage based on large-scale pipe specimens. Artificial damage such as dent, metal loss, crack and combinations thereof is introduced on the pipe surface in advance. The entire test project consists of 34 seamless pipes with a relative low Diameter-to-thickness (D/t) ratio around 21.3, among which four intact specimens and thirty damaged specimens have been carried out for mutual comparison. Extensive measurements on structural damage and pipe geometries including wall thickness and outer diameter are performed. The material properties are measured by tensile tests with specimens from both pipe longitudinal and hoop direction. The four-point bending tests are performed to investigate the structural behaviors of metallic pipes. The bending strength associating with failure mode of each specimen is documented extensively, and the bending moment-curvature curves are presented and discussed. The fundamental research of experiments on damaged pipes in the present paper will be deployed for the following numerical and analytical research in the near future.

Author(s):  
Jie Cai ◽  
Xiaoli Jiang ◽  
Gabriel Lodewijks ◽  
Zhiyong Pei ◽  
Ling Zhu

The ultimate strength of metallic pipelines will be inevitably affected when they have suffered from structural damage after mechanical interference. The present experiments aim to investigate the residual ultimate bending strength of metallic pipes with structural damage based on large-scale pipe tests. Artificial damage, such as a dent, metal loss, a crack, and combinations thereof, is introduced to the pipe surface in advance. Four-point bending tests are performed to investigate the structural behavior of metallic pipes in terms of bending moment–curvature diagrams, failure modes, bending capacity, and critical bending curvatures. Test results show that the occurrence of structural damage on the pipe compression side reduces the bending capacity significantly. Only a slight effect has been observed for pipes with damage on the tensile side as long as no fracture failure appears. The possible causes that have introduced experimental errors are presented and discussed. The test data obtained in this paper can be used to further quantify damage effects on bending capacity of seamless pipes with similar D/t ratios. The comparison results in this paper can facilitate the structural integrity design as well as the maintenance of damaged pipes when mechanical interference happens during the service life of pipelines.


2001 ◽  
Vol 45 (02) ◽  
pp. 111-132 ◽  
Author(s):  
Jeom Kee Paik ◽  
Owen F. Hughes ◽  
Alaa E. Mansour

The aim of this paper is to develop an advanced ultimate strength formulation for ship hulls under vertical bending moment. Since the overall failure of a ship hull is normally governed by buckling and plastic collapse of the deck, bottom, and sometimes the side shell stiffened panels, it is of crucial importance to accurately calculate the ultimate strength of stiffened panels in deck, bottom and side shell for more advanced ultimate strength analyses. In this regard, the developed formulation is designed to be more sophisticated than previous simplified theoretical methods for calculating the ultimate strength of stiffened panels under combined axial load, in-plane bending and lateral pressure. Fabrication-related initial imperfections (initial deflections and residual stresses) and potential structural damage related to corrosion, collision, or grounding are included in the panel ultimate strength calculations as parameters of influence. All possible collapse modes involved in collapse of stiffened panels, including overall buckling collapse, column or beam-column type collapse (plate or stiffener induced collapse), tripping of stiffeners and local buckling of stiffener web, are considered. As illustrative examples, the paper investigates and discusses the sensitivity of parameters such as lateral pressure, fabrication-related initial imperfections, corrosion, collision and grounding damage on the ultimate strength of a typical Cape size bulk carrier hull under vertical bending.


1998 ◽  
Vol 35 (01) ◽  
pp. 38-54
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Soo Hong Yang

The aim of this study is to develop a fast and reasonably accurate method for assessing collapse of the hull girder in the damaged condition. Location and amount of collision and grounding damage are prescribed. The possibility of hull collapse is explored by a comparison of the applied extreme bending moment and the ultimate hull strength which are estimated using design oriented methods and formulas• Two types of residual strength index, namely the section modulus based residual strength index and the ultimate bending strength based residual strength index, are defined. The method developed in this paper should be useful for preliminary structural design of a ship hull in accidental situations• It should also be potentially useful as one element of a decision making process related to salvage and rescue.


2015 ◽  
Author(s):  
Yordan Garbatov ◽  
Carlos Guedes Soares

The objective of this work is to present a review of recently performed experimental tests of large and small scale steel corroded specimens. Four types of tests are discussed here: corrosion deterioration, ultimate strength, tensile strength and fatigue strength material properties. Two large scale specimens, in the form of box girders simulating the midship section of tanker ship where corroded in a natural open sea condition. The corrosion degradation and its distribution around the structural components of the box girders are presented and discussed. The effect of the severity of corrosion degradation on the strength of the corroded steel specimens is experimentally evaluated, where the box girders are tested under four-point loading, producing a constant bending moment along the box girder until collapse. The experimental results of fatigue strength tests of small scale corroded steel specimens, cut from the same corroded box girders, are also presented. Finally, the experimental tensile strength tests are performed using small-scale corroded specimens, cut from the corroded box girders after the ultimate strength test was completed. The test identifies the effect of the degree of degradation to the mechanical properties of the specimens, namely modulus of elasticity, yield stress, tensile strength and total uniform elongation are also presented. The results of the experimental tests, presented here, are highly important and need to be accounted for when linear or nonlinear structural analyses are performed to evaluate the structural capacity of ageing marine structure.


2020 ◽  
Vol 86 (5) ◽  
pp. 43-51
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
P. V. Volkov ◽  
D. A. Zhgut

The history of appearance and the current state of instrumented indentation are briefly described. It is noted that the materials instrumented indentation methods using a pyramid and ball indenters are actively developing and are currently regulated by several Russian and international standards. These standards provide formulas for calculating the Young’s modulus and hardness at maximum indentation load. Instrumented indentation diagrams «load F – displacement α» of a ball indenter for metallic materials were investigated. The special points on the instrumented indentation diagrams «F – α» loading curves in the area of elastic into elastoplastic deformation transition, and in the area of stable elastoplastic deformation are revealed. A loading curve area with the load above which the dF/dα begins to decrease is analyzed. A technique is proposed for converting «F – α» diagrams to «unrestored Brinell hardness HBt – relative unrestored indent depth t/R» diagrams. The elastic and elastoplastic areas of «HBt – t/R» diagrams are described by equations obtained analytically and experimentally. The materials strain hardening parameters during ball indentation in the area of elastoplastic and plastic deformation are proposed. The similarity of «HBt – t/R» indentation diagram with the «stress σ – strain δ» tensile diagrams containing common zones and points is shown. Methods have been developed for determining hardness at the elastic limit, hardness at the yield strength, and hardness at the ultimate strength by instrumented indentation with the equations for their calculation. Experiments on structural materials with different mechanical properties were carried out by instrumented indentation. The values of hardness at the elastic limit, hardness at the yield strength and hardness at the ultimate strength are determined. It is concluded that the correlations between the elastic limit and hardness at the elastic limit, yield strength and hardness at the yield strength, ultimate tensile strength and hardness at the ultimate strength is more justified, since the listed mechanical characteristics are determined by the common special points of indentation diagrams and tensile tests diagrams.


Author(s):  
Fayu Wang ◽  
Nicholas Kyriakides ◽  
Christis Chrysostomou ◽  
Eleftherios Eleftheriou ◽  
Renos Votsis ◽  
...  

AbstractFabric reinforced cementitious matrix (FRCM) composites, also known as textile reinforced mortars (TRM), an inorganic matrix constituting fibre fabrics and cement-based mortar, are becoming a widely used composite material in Europe for upgrading the seismic resistance of existing reinforced concrete (RC) frame buildings. One way of providing seismic resistance upgrading is through the application of the proposed FRCM system on existing masonry infill walls to increase their stiffness and integrity. To examine the effectiveness of this application, the bond characteristics achieved between (a) the matrix and the masonry substrate and (b) the fabric and the matrix need to be determined. A series of experiments including 23 material performance tests, 15 direct tensile tests of dry fabric and composites, and 30 shear bond tests between the matrix and brick masonry, were carried out to investigate the fabric-to-matrix and matrix-to-substrate bond behaviour. In addition, different arrangements of extruded polystyrene (XPS) plates were applied to the FRCM to test the shear bond capacity of this insulation system when used on a large-scale wall.


2021 ◽  
Vol 11 (9) ◽  
pp. 4068
Author(s):  
Wenjun An ◽  
Guquan Song

Given the possible separation problem caused by the double-span continuous beam bridge under the action of the vertical earthquake, considering the wave effect, the transient wave characteristic function method and the indirect mode superposition method are used to solve the response theory of the bridge structure during the earthquake. Through the example analysis, the pier bending moment changes under different vertical excitation periods and excitation amplitudes are calculated. Calculations prove that: (1) When the seismic excitation period is close to the vertical natural vibration period of the bridge, the main girder and the bridge pier may be separated; (2) When the pier has a high height, the separation has a more significant impact on the longitudinal displacement of the bridge, but the maximum relative displacement caused by the separation is random; (3) Large-scale vertical excitation will increase the number of partitions of the structure, and at the same time increase the vertical collision force between the main girder and the pier, but the effect on the longitudinal displacement of the form is uncertain; (4) When V/H exceeds a specific value, the pier will not only be damaged by bending, but will also be damaged by axial compression.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim ◽  
Myongsok Song

Abstract This work presents a novel design of a hydrostatic thrust foil bearing (HSTFB) with an outer diameter of 154mm along with simulation and test results up to specific load capacity of 223kPa (32.3psi). The HSTFB incorporates a high pressure air/gas injection to the thrust foil bearing with a uniform clearance. This bearing has high load capacity, low power loss, and no friction/wear during startup and shutdown. In addition, the HSTFB allows for bidirectional operation. The paper also presents an advanced simulation model which adopts the exact locations of a tangentially arranged bumps to a cylindrical two-dimensional plate model of the top foil. This method predicts top foil deflection with better accuracy than the traditional independent elastic foundation model which distributes the bump locations over the nodal points in the cylindrical coordinates, and with less computational resource than the finite element method applied to the entire bump/top foils. The presented HSTFB, was designed for Organic Rankine Cycle (ORC) generators, but its performance was predicted and measured using air in this paper. The bearing static performance is compared analytically against the rigid counterpart, and presented at different supply pressures, speeds, and minimum film thicknesses. Experimental verification is conducted at 10, 15 and 20krpm. The measured load capacity and frictional loss agree well with the prediction. The measured film thickness also agrees with the prediction after the structural deflection of the thrust runner disc is compensated. Overall, the novel HSTFB demonstrates an excellent static performance and shows good potential for adoption to the intended ORC generators and other large oil-free turbomachines.


2011 ◽  
Vol 55 (03) ◽  
pp. 208-219 ◽  
Author(s):  
Alberto Decó ◽  
Dan M. Fragopol ◽  
Nader M. Okasha

An efficient procedure for the computation of the redundancy of ship structures is presented. The changes in the redundancy due to corrosion section loss over time are also studied. Moreover, uncertainties associated with structural geometry, material properties, and loading, are accounted for. In order to calculate the redundancy index, the probability of failure of the first component and the probability of ultimate failure of the whole hull girder must be evaluated. The probability of failure is computed using a hybrid Latin Hypercube - second-order reliability method (SORM) technique. The deterministic analyses during the simulations are conducted using an optimization approach for computing the ultimate bending strength of the whole hull girder and the progressive collapse method for computing the first bending failure.


Sign in / Sign up

Export Citation Format

Share Document