scholarly journals Transient Response of Bridge Piers to Structure Separation under Near-Fault Vertical Earthquake

2021 ◽  
Vol 11 (9) ◽  
pp. 4068
Author(s):  
Wenjun An ◽  
Guquan Song

Given the possible separation problem caused by the double-span continuous beam bridge under the action of the vertical earthquake, considering the wave effect, the transient wave characteristic function method and the indirect mode superposition method are used to solve the response theory of the bridge structure during the earthquake. Through the example analysis, the pier bending moment changes under different vertical excitation periods and excitation amplitudes are calculated. Calculations prove that: (1) When the seismic excitation period is close to the vertical natural vibration period of the bridge, the main girder and the bridge pier may be separated; (2) When the pier has a high height, the separation has a more significant impact on the longitudinal displacement of the bridge, but the maximum relative displacement caused by the separation is random; (3) Large-scale vertical excitation will increase the number of partitions of the structure, and at the same time increase the vertical collision force between the main girder and the pier, but the effect on the longitudinal displacement of the form is uncertain; (4) When V/H exceeds a specific value, the pier will not only be damaged by bending, but will also be damaged by axial compression.

Author(s):  
Pu Li ◽  
Qi Yuan ◽  
Bingxi Zhao ◽  
Jin Gao

Abstract Rod-fastened rotors are widely applied in heavy duty gas turbines and aircraft engines due to a good stiffness-to-weight behavior compared to conventional forged rotors. In order to achieve a continuous and stable power output, it is critical to guarantee the mechanical integrity. Therefore, the clamping force is of great importance which influences the distribution of the contact pressure. In an extreme condition, the bolt loosening resulting in an additional bending moment entails a different dynamic response. In this paper, the dynamics of a rod-fastened rotor subjected to the unbalance force, combined loads from the residual bow as well as the bolt loosening will be analyzed. First of all, an accurate rod-fastened rotor model is generated incorporating 1D beam element and zero-length joint element. Next, the mode superposition method is applied to derive the equations of motion and the analytical solution of the rod-fastened rotor will be achieved. Furthermore, experimental results are used to verify the simulations. It has demonstrated that the rod loosening yields a remarkably different behavior compared to the normal rotor after balancing. The dynamic response is also closely dependent on the unbalance as well as the relative phase angle between the location of unbalance and rod loosening. This paper provides a fundamental insight into the steady response of the rod-fastened rotor and may be used for fault identification as well as balancing of combined rotors.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Jiawei Wang ◽  
Bing Cao ◽  
Bo Huang ◽  
Yihan Du

In the process of rotation, the total weight of the bridge structure is jointly supported by the spherical hinge and the supporting structure, and its lateral stability is poor. It is easy to lose stability under the action of dynamic loads such as seismic action effect. The present paper takes a 10,000-ton continuous rigid frame swivel bridge as the re-search object, analyzes the dynamic response of the seismic action to the horizontal swivel system, and establishes several structure simulation models. Eighteen seismic waves in three directions that meet the calculation requirements are screened for time history analysis and compared with the response spectrum method. Finally, an optimization algorithm for the seismic response of the bridge under horizontal swivel system is proposed based on the mode superposition method. The UHPC spherical hinge bears all the vertical forces and 20% of the bending moment caused by the seismic action, the support structure bearing the remaining 80% of the bending moment. The optimization algorithm proposed in this paper features high accuracy.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Wenjun An ◽  
Guquan Song ◽  
Shutong Chen

Given the influence of near-fault vertical seismic action, we established a girder-spring-damping-rod model of a double-span continuous girder bridge and used the transient wave function expansion method and indirect modal function method to calculate the seismic response of the bridge. We deduced the theoretical solution for the vertical and longitudinal contact force and displacement response of the bridge structure under the action of the near-fault vertical seismic excitation, and we analyzed the influence of the vertical separation of the bridge on the bending failure of the pier. Our results show that under the action of a near-fault vertical earthquake, pier-girder separation will significantly alter the bridge’s longitudinal displacement response, and that neglecting this separation may lead to the underestimation of the pier’s bending damage. Calculations of the bending moment at the bottom of the pier under different pier heights and cross-sectional diameters showed that the separation of the pier and the girder increases the bending moment at the pier’s base. Therefore, the reasonable design of the pier size and tensile support bearing in near-fault areas may help to reduce longitudinal damage to bridges.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1009
Author(s):  
Ilaria De Santis ◽  
Michele Zanoni ◽  
Chiara Arienti ◽  
Alessandro Bevilacqua ◽  
Anna Tesei

Subcellular spatial location is an essential descriptor of molecules biological function. Presently, super-resolution microscopy techniques enable quantification of subcellular objects distribution in fluorescence images, but they rely on instrumentation, tools and expertise not constituting a default for most of laboratories. We propose a method that allows resolving subcellular structures location by reinforcing each single pixel position with the information from surroundings. Although designed for entry-level laboratory equipment with common resolution powers, our method is independent from imaging device resolution, and thus can benefit also super-resolution microscopy. The approach permits to generate density distribution maps (DDMs) informative of both objects’ absolute location and self-relative displacement, thus practically reducing location uncertainty and increasing the accuracy of signal mapping. This work proves the capability of the DDMs to: (a) improve the informativeness of spatial distributions; (b) empower subcellular molecules distributions analysis; (c) extend their applicability beyond mere spatial object mapping. Finally, the possibility of enhancing or even disclosing latent distributions can concretely speed-up routine, large-scale and follow-up experiments, besides representing a benefit for all spatial distribution studies, independently of the image acquisition resolution. DDMaker, a Software endowed with a user-friendly Graphical User Interface (GUI), is also provided to support users in DDMs creation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Kaiyang Wang ◽  
Yanjun Shang

This paper examines the performance of a novel technology, vertical steel floral tube micropiles with double grouting. It is the combination of micropile technology and double grouting technology. A large-scale model tank was applied to impart horizontal bearing capacity, and the slope soil pressure and flexural performance of the micropile were investigated under four experimental conditions. The peak grouting pressure during the double grouting process was defined as the fracturing pressure of the double grouting, and it was positively correlated to the interval time between first grouting and secondary grouting. Compared with traditional grouting, double grouting increased the horizontal bearing capacity of the single micropile with the vertical steel floral tube by 24.42%. The horizontal bearing capacity was also 20.25% higher for the structure with three micropiles, compared with a 3-fold value of horizontal sliding resistance. In the test, the maximum bending moment acting on the pile above the sliding surface was located 2.0–2.5 m away from the pile top, and the largest negative bending moment acting on the pile below the slip surface was located 4.0 m away from the pile top. The ultimate bending moment of the single pile increased by 12.8 kN·m with double grouting, and the bending resistance increased by 96.2%. The experimental results showed that the double grouting technology significantly improved the horizontal bearing capacity of the micropile with the steel floral tube, and the soil reinforcement performance between piles was more pronounced. Also, the shear capacity and the flexural capacity were significantly improved compared with the original technology.


1996 ◽  
Vol 3 (1) ◽  
pp. 27-37
Author(s):  
Takuzo Iwatsubo ◽  
Shozo Kawamura ◽  
Masahito Kamada

A new method for reducing ill-conditioning in a class of identification problems is proposed. The key point of the method is that the identified vibration of the sound source is expressed as a superposition of vibration modes. The mathematical property of the coefficient matrix, the practical error expanding ratio, and the stochastic error expanding ratio are investigated in a numerical example. The mode-superposition method is shown to be an effective tool for acoustic-vibratory inverse analysis.


1983 ◽  
Vol 105 (2) ◽  
pp. 171-178 ◽  
Author(s):  
V. N. Shah ◽  
C. B. Gilmore

A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.


2021 ◽  
Vol 10 (3) ◽  
pp. 163-176
Author(s):  
Shuvrodeb Adhikary ◽  
Shohel Rana ◽  
Jerin Tasnim ◽  
Nazrul Islam

The dynamic Impact Factor (IM) of a bridge is influenced by many factors, including Vehicle-Bridge Interaction (VBI), vehicle speed and road roughness. This paper represents the dynamic effects of moving vehicles and the determination of IM of an existing Pre-stressed concrete I-girder bridge utilizing VBI modeling. Evaluation of the IM is expected to provide valuable information for condition assessment and management of the existing bridge. The interaction problem between the vehicle and the bridge includes a dynamic model for the bridge structure subsystem, a dynamic model for the vehicle subsystem, interaction constraints, road roughness modelling and numerical solution techniques for the dynamic systems. The Half-car model is utilized for modelling of the vehicle dynamics and the bridge dynamic model is idealized according to Finite Element Method (FEM). Then FEM along with the mode superposition method are utilized for determining the Equation of Motion (EOM) for the bridge subsystem. D’Alembert’s principle is used for developing EOM for the vehicle subsystem. The interaction between vehicle vibration and bridge vibration is established through the contact forces between the wheels and the bridge by employing the compatibility relationship between the contact points and by applying the static equilibrium condition. Lastly, Newmark’s-β method is used for solving the coupled mathematical model of the vehicle and bridge interaction problem to determine the responses of the two sub-systems. The whole procedure is then performed for different vehicle speeds and various bridge deck surface roughness conditions to determine the dynamic impact on the existing I-girder bridge named Teesta Bridge located in Bangladesh.


2021 ◽  
Vol 6 (4) ◽  
pp. 100-104
Author(s):  
M. N. Massoud Elsiragy

— Structure’s systems are subjected to additional loads due to earthquakes that may be produces progressive failures. The building illustrates dissimilar categories of failure mechanism for the minor to major earthquake conditions. These structures categorized to the most susceptible type of building has experienced serious hazard or even full failure for the period of seismic activities, therefore their investigation is a complex thing to do. Consequently, this research aims at studying the behaviour of large-scale model of structures constructed with and without brick walls under seismic conditions. The effect of building walls on the performance of the structure during earthquake loading is investigated numerically using PLAXIS 3D software. An eight story building with basement designed on a mat foundation is simulated as three-dimensional model in case of brick walls existing and without brick walls case. The effect of existence such wall building on the stability of foundation soil system is discussed in the form of lateral, horizontal deformation, and foundation acceleration. The studied showed that the reduction of extreme horizontal displacement and bending moment for building foundation with brick walls reached to 43%, and 68% respectively compared to the building without walls. The consideration of wall as filling for super structure significantly reduce the foundation acceleration by as much as 72% of its initial value, which lead to considerable effect of increasing the foundation stability.


1955 ◽  
Vol 22 (3) ◽  
pp. 311-316
Author(s):  
P. G. Hodge

Abstract The centrifugal forces acting upon a rotating ray will produce longitudinal stresses along the ray. If the ray is not symmetric, these stresses will result not only in a longitudinal force, but also in a bending moment. A technique for finding the stress distribution in this case is developed and illustrated by means of simple examples. The limiting elastic speed and the maximum speed before large-scale plastic deformation commences are computed. An indication is given of how similar methods may be used to analyze a rotating disk with no plane of symmetry perpendicular to the axis.


Sign in / Sign up

Export Citation Format

Share Document