Research on Protective Performance of Protective Liquid Tank to Shock Wave Generated by Fragment

Author(s):  
Yang Hong ◽  
Xiaobin Li ◽  
Yuchen Bao

Abstract In this paper, the simulation method is used to study the installation of metal plates in the liquid tank as a protective structure. The process of shock wave propagation in the liquid tank is analyzed by finite element software, and the metal plate deformation caused by shock wave is discussed. In addition, the pressure changes of different measuring points are compared when installing aluminum plate, steel plate and no protective structure in the liquid tank, and the effects of different protective structures on weakening shock wave are analyzed. Through the simulation method, the protective effects of the three basic parameters (the layer number, position and angle) of the protective structure are analyzed, and the effects of different forms of protective structures on the ability for weakening shock wave are also discussed. The results of this paper can provide references for the optimal design of liquid tank protection and its application in ship protection.

Author(s):  
Hirofumi Iyama ◽  
Masahiro Fujita ◽  
K. Raghukandan ◽  
Kazuyuki Hokamoto ◽  
Shigeru Itoh

Explosive welding using underwater shock wave has been conducted. This technique is a new method of explosive welding and can weld a steel plate with an amorphous film, multi-layer of thin copper plates and so on. The conventional method of usual explosive welding cannot weld these combinations of material. It is possible to change shock pressure acting on the flyer plate easily, because the equipment for this method can change the inclined angle and distance between the explosive and flyer plate. However, we have to understand the mechanism of this method to seek the most suitable for set-up condition. Therefore, the numerical simulation of this method was made. The simulation method was FDM using Lagrangean scheme and it can express the detonation process of explosive, propagation process of underwater shock wave, deformation process of metal plate and collision process of between flyer and base plates. In this paper, these simulation results are discussed.


2011 ◽  
Vol 673 ◽  
pp. 265-270 ◽  
Author(s):  
Akihisa Mori ◽  
Li Qun Ruan ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code is a flexible code with an explosive core. It is used to transmit the ignition of explosives with high detonation velocity in the range of 5.5 to 7 km/s. However, it is difficult to use detonating code for the explosive welding of common metals since the horizontal point velocity usually exceeds the sound velocity. Hence, in the present work, a new method using underwater shock wave generated by the detonation of detonating code was tried. The details of the experimental parameters and the results are presented. From the results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoqiu Xu ◽  
Han Tao ◽  
Junwei Han

The simulation of regular shock wave (e.g., half-sine) can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.


2012 ◽  
Vol 174-177 ◽  
pp. 2170-2175
Author(s):  
Rong Jun Zhao ◽  
Jun Zhen Zhang ◽  
Hai Bin Zhou ◽  
Ben Hua Fei

In this study, Larix gemilinii and metal plate were selected as the main materials. According to GB5005-2003, the connection properties of tension-splice joint and larch wood were investigated. The results showed that the elastic modulus of Larix gemilinii was not affected by the performance parameters of tension-splice joint greatly and three kinds of failure modes were introduced. Besides the design value for the ultimate bearing capacity of Larix gemilinii and the design value for the ultimate tensile bearing capacity of the metal plates were determined. A conservative calculation method for ductility ratio of metal plates was proposed. The ductility ratio of the metal plate connected joint changed with the construction modes, and the ductility ratio for metal plate parallel to the grain (more than 2.4) was obviously bigger than that of perpendicular to the grain, which complies with the requirements for ductility ratio in anti-seismic structure.


2012 ◽  
Vol 594-597 ◽  
pp. 222-225
Author(s):  
Wen Juan Feng ◽  
Xiao Dong Ju ◽  
Zheng Sheng Zou

Although anti-slide pile take a key position in slope-treating measures, the method of designing is far from perfect. The methods used in actual projects are based on the rigid body limit equilibrium methods. There is a tendency to using numerical methods in the progress of pile-designing. The safety factor of landslide is calculated according to shear strength reduction theory in the numerical simulation software. Using the shearing forces on pile and the safety factor can ascertain the position of anti-slide piles, the area and distance of piles. For numerical simulation can well perform the simulation slope moving and the load on piles and can give a more reasonable designing.


2017 ◽  
Vol 118 (04) ◽  
pp. 228-232 ◽  
Author(s):  
G. Ozmerdiven ◽  
B. A. Vuruskan ◽  
O. Kaygisiz ◽  
H. Vuruskan

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alireza Bahrami ◽  
Ali Mahmoudi Kouhi

Abstract Concrete-filled thin-walled steel tubular slender columns are studied in this paper to evaluate their stiffness. The slender columns have various steel tube thicknesses, length/diameter (width) ratios, and concrete compressive strengths. The columns are loaded by axial and eccentric loads. Two experimental tests of the slender and stub columns are described. Also, the finite element software ABAQUS is utilised to simulate and analyse the columns. The tested columns are simulated taking into account all their features in the tests to verify the simulation of the columns. The simulation results are compared with the tests results which reveal that good agreements exist between them. Thus, the proposed simulation method of the columns is verified. In order to assess the stiffness of the columns under different conditions, various load eccentricities (0 mm, 25 mm, and 50 mm), cross-sectional configurations (circular, rectangular, and square), and steel tube thicknesses (2 mm, 3.35 mm, and 5 mm) are adopted for the developed columns. The columns are simulated and analysed based on the verified simulation method considering the mentioned conditions. As a conclusion, the stiffness of the columns is generally reduced by the increase of the load eccentricity from 0 mm to 25 mm and 50 mm. Further, more uniform distribution of the stiffness is witnessed for the columns with lower eccentricities. In addition, the enhancement of the load eccentricity increased the reduction slope of the stiffness graph for the columns. Although the initial stiffness of the circular column is slightly lower than the rectangular and square columns, the stiffness has more uniform distribution which is preferred. Larger stiffness is achieved for the columns by increasing the steel tube thickness from 2 mm to 3.35 mm and 5 mm.


2011 ◽  
Vol 99-100 ◽  
pp. 1023-1026 ◽  
Author(s):  
Lu Yang ◽  
Shi Min Li ◽  
Dai Heng Chen ◽  
Zhi Min Wu

This paper bases on the prototype of the actual shed tunnel structure, study on contact force, displacement, damage, energy of shed tunnel under impact of rock-fall. By ABAQUS finite element software to simulate the process of roll-fall impact knowable: Rock-fall at different speeds and incident angle shocks on shed tunnel has great influence to concrete protective structure of contact force and displacement; Concrete protective structure damage the worst hit area of occurred with roll-fall contact area, the second is inclined leg column top and in connection with the pillars of the beam damage is also very serious, In practical projects first should pay attention to strengthen the intensity of the pillars with beam joints and prevent damage; From the angle of energy we can see that shed tunnel is mainly through the concrete protective structure to absorb and consumption impact energy, soil cushion absorption and consumption impact energy is very limited, to alleviate the impact of concrete protective layer rolling damage, and suggestions in shed tunnel bearing place additional energy shock absorber to increases protection structure system soft degrees under the condition of minimize the shed tunnel weight, achieve the purpose of decrease shock energy.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ameneh Maghsoodi ◽  
Abdolreza Ohadi ◽  
Mojtaba Sadighi

The major purpose of this paper is the development of wave dispersion curves calculation in multilayered composite-metal plates. At first, equations of motion and characteristic equations for the free waves on a single-layered orthotropic plate are presented. Since direction of wave propagation in composite materials is effective on equations of motion and dispersion curves, two different cases are considered: propagation of wave along an axis of material symmetry and along off-axes of material symmetry. Then, presented equations are extended for a multilayered orthotropic composite-metal plate using the transfer matrix method in which a global transfer matrix may be extracted which relates stresses and displacements on the top layer to those on the bottom one. By satisfying appropriate boundary conditions on the outer boundaries, wave characteristic equations and then dispersion curves are obtained. Moreover, presented equations may be applied to other materials such as monoclinic, transversely isotropic, cubic, and isotropic materials. To verify the solution procedure, a number of numerical illustrations for a single-layered orthotropic and double-layered orthotropic-metal are presented.


Sign in / Sign up

Export Citation Format

Share Document