Widening Drilling Operation: Performance Analysis on the Application of Fixed Cutter Drill Bits in Hard Rock Formation

Author(s):  
Jeronimo De Moura ◽  
Yingjian Xiao ◽  
Daiyah Ahmed ◽  
James Yang ◽  
Stephen D. Butt

Abstract This study is an evaluation of drilling mechanisms for widening drilling operations, which are also called hole opening or enlarge drilling operations, in hard rock formations during drilling operation with fixed cutter bits. This paper focuses on correlating drilling performance, or Rate of Penetration (ROP), with drilling parameters such as Weight on Bit (WOB), rotary speed, Torque on Bit (TOB) and bit type. Laboratory Drill-Off Tests (DOT) were conducted using a drilling simulator. Natural granite specimens were penetrated using different types of fixed cutter bits with different diameters. Various magnitudes of WOB were applied during these drilling experiments in order to study drilling performance in this type of formation. A well-organized drilling experimental plan was proposed to cover both procedures of pilot holes and widening drilling operations. Comparison were made between performance conditions obtained during the drilling operations of pilot holes and similar conditions during widening drilling operations. Furthermore, bit-rock interaction was studied by comparing experimental data with that obtained from empirical models. The focus of this paper was to analyze the ROP during each stage of the widening drilling operations of a pilot hole and its correlation with other parameters. The applicability of current empirical models and their limitations in widening drilling operations in hard rock formation was analyzed. In this way, this drilling model is applied in widening drilling operations of hard rock formation with fixed cutter bits.

Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


2014 ◽  
Vol 55 (68) ◽  
pp. 53-64 ◽  
Author(s):  
Trevor J. Popp ◽  
Steffen B. Hansen ◽  
Simon G. Sheldon ◽  
Christian Panton

AbstractThe NEEM deep ice-core drilling in northwest Greenland was completed in summer 2010 after three seasons, which included establishing all drilling infrastructure. Normal drilling operations in the main borehole were declared terminated at 2537.36 m below the surface, when further penetration was stopped by a stone embedded in the ice in the path of the drill head. The design and implementation of the drilling operation strongly resembled the NGRIP drilling program. The NEEM drill was an extended version of the Hans Tausen (HT) drill, with specific modifications to optimize its use with the highly viscous Estisol-240/Coasol drill fluid used at NEEM. Modification to the drill and its performance in the new drilling fluid was largely satisfactory and successful. Throughout the drilling, special consideration was given to the way chips were transported and collected in a new chip chamber, including the consequences of drilling a larger borehole diameter than with previous drill operations that used the HT family of drills. The problems normally associated with warm ice drilling near the base of an ice sheet were largely absent at NEEM.


Author(s):  
Mohamed A. A. Abdeldayem ◽  
Mohamed H. Mabrouk ◽  
Mootaz Abo-Elnor

Abstract Soil drilling operation has become one of the most important interests to researchers due to its many applications in engineering systems. Auger drilling is one of the ideal methods in many applications such as pile foundation engineering, sampling test for geological, and space sciences. However, the dominant factor in determination of drilling parameters drilling operations experience. Therefore, soil-drilling process using auger drilling is studied to obtain the controlling parameters and to optimize these parameters to improve drilling performance which enables proper selection of machine for a required job. One of the main challenges that faces researchers during using of modeling techniques to define the soil drilling problem is the complex nonlinear behavior of the drilled medium itself due to its discontinuity and heterogeneous formation. This article presents two models that can be used to predict the total resistive forces which affect the auger during soil drilling operations. The first proposed model discusses the problem analytically in a way that depends on empirical data that can be collected from previous experience. The second model discusses the problem numerically with less depending on empirical experienced data. The analytical model is developed using matlab® interface, while the numerical model is developed using discrete element method (DEM) using edem software. A simplified auger drilling machine is built in the soil–tool interaction laboratory, Military Technical College to obtain experimental results that can be used to verify the presented models. Data acquisition measuring system is established to obtain experimental results using a labview® software which enables displaying and recording the measured data collected mainly from transducers planted in the test rig. Both analytical and numerical model results are compared to experimental values to aid in developing the presented parametric study that can be used to define the working parameters during drilling operations in different types of soils. Uncertainty calculations have been applied to ensure the reliability of the models. The combined calculated uncertainty leads to the level of confidence of about 95%.


Author(s):  
Mohamed A. A. Abdeldayem ◽  
Mohamed H. Mabrouk ◽  
Mootaz Abo-Elnor

Abstract Soil drilling operation has become one of the most important interest to researchers due to its many applications in engineering systems. Auger drilling is one of the ideal methods in many applications such as pile foundation engineering, sampling test for geological sciences and space. However, the dominant factor in determination of drilling parameters is real drilling operations experience, which may cause transportation blocking of chips that leads to accidents. As a result, soil drilling process using auger drilling is studied to obtain the controlling parameters and to optimize these parameters to improve drilling performance which enables proper selection of machine for a required job. One of the main challenges that faces researchers during using of modelling techniques to define the soil drilling problem is the complex nonlinear behaviour of the drilled medium itself due to its discontinuity and heterogeneous formation. This paper presents two models that can be used to predict the total resistive forces which affect the auger during soil drilling operation. The first proposed model discusses the problem analytically in a way that depends on empirical data that can be collected from previous experience while the second model discusses the problem numerically with less depending on empirical experienced data. The analytical model is developed using Matlab® interface while the numerical model is developed using discrete element method via EDEM® software. A simplified auger drilling machine is built in the soil-tool interaction laboratory, Military Technical College to obtain experimental results that can be used to verify the presented models. Data acquisition measuring system is established to obtain experimental results using a Labview® program. This program enables displaying and recording the measured data collected mainly from transducers planted in the test rig. Both Analytical and numerical models results are compared to experimental values to aid in developing the presented parametric study that can be used to define the working parameters during drilling operations in different types of soils.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
David Hankins ◽  
Saeed Salehi ◽  
Fatemeh Karbalaei Saleh

The ability to optimize drilling procedures and economics involves simulation to understand the effects operational parameters and equipment design have on the ROP. An analysis applying drilling performance modeling to optimize drilling operations has been conducted to address this issue. This study shows how optimum operational parameters and equipment can be predicted by simulating drilling operations of preexisting wells in a Northwest Louisiana field. Reference well data was gathered and processed to predict the “drillability” of the formations encountered by inverting bit specific ROP models to solve for rock strength. The output data generated for the reference well was formatted to simulate upcoming wells. A comparative analysis was conducted between the predicted results and the actual results to show the accuracy of the simulation. A significant higher accuracy is shown between the simulated and actual drilling results. Once simulations were validated, optimum drilling parameters and equipment specifications were found by varying different combinations of weight on bit (WOB), rotary speed (RPM), hydraulics, and bit specifications until the highest drilling rate is achieved for each well. A qualitative and quantitative analysis of the optimized results was conducted to assess the potential operational and economic benefits on drilling operations.


2021 ◽  
Author(s):  
Daiyan Ahmed ◽  
Jeronimo De Moura Junior ◽  
Stephen Butt ◽  
Yingjian Xiao

2021 ◽  
pp. 1-15
Author(s):  
Anirban Mazumdar ◽  
Stephen Buerger ◽  
Adam Foris ◽  
Jiann-cherng Su

Abstract Drilling systems that use downhole rotation must react torque either through the drill-string or near the motor to achieve effective drilling performance. Problems with drill-string loading such as buckling, friction, and twist become more severe as hole diameter decreases. Therefore, for small holes, reacting torque downhole without interfering with the application of weight-on-bit, is preferred. In this paper we present a novel mechanism that enables effective and controllable downhole weight on bit transmission and torque reaction. This scalable design achieves its unique performance through four key features: 1) mechanical advantage based on geometry, 2) direction dependent behavior using rolling and sliding contact, 3) modular scalability by combining modules in series, and 4) torque reaction and weight on bit that are proportional to applied axial force. As a result, simple mechanical devices can be used to react large torques while allowing controlled force to be transmitted to the drill bit. We outline our design, provide theoretical predictions of performance, and validate the results using full-scale testing. The experimental results include laboratory studies as well as limited field testing using a percussive hammer. These results demonstrate effective torque reaction, axial force transmission, favorable scaling with multiple modules, and predictable performance that is proportional to applied force.


2021 ◽  
Author(s):  
Elchin Akbarli ◽  
Rufat Mammadbayli

Abstract The company is executing an underground gas storage project at an unprecedented scale. The intent of this paper is to demonstrate the execution methodology and technologies that the company employed to achieve within set deadlines and deliver the work on time and under the given budget. This paper, therefore will focus on outlining all planning, design as well as drilling & completions strategies utilized by the operating company during the execution phase. During Phase 2 of the project, the Drilling Contractor was engaged to deliver a total of 40 wells within a short period of time. These wells were planned to expand the total gas storage capacity at the Tuz Golu facility to ca. 5 bcm of natural gas stored in underground salt caverns. Tuz Golu wells are vertical with three (3) casing string wells. These land wells are big bore and commence from the installation of the 30″ conductor at a depth of 120m using a small 150-ton conductor rig. Pre-installation of conductors significantly helped accelerate the project delivery schedule. Main drilling operations commenced in January 2020. Since the structure wasn't fully explored in spite of 2D seismic work and the first phase operations, a number of wells drilled encountered no salt leading to their abandonment. As a result, the total duration of the project was consequently extended. Re-Engineering and lessons learned during execution helped deliver a successful learning curve in both drilling and completion operations. The strategy of the company to drill a well in stages of top hole, main drilling and the completion using multiple rig operations was successful, bringing an overall well time from 55 at the beginning of the project to 20 days per well. Thorough planning and design of the wells allowed the company to deliver the projects with well integrity, full suitable for gas storage operations. As a result, the project was executed on time and well within the planned budget thus delivering an excellent value to the stakeholders and main client. The Drilling Contractor has been proactive to employ this staged approach from the very beginning of the project. Irrespective of the delays the Drilling Contractor continued operations with the intermittent rig count of 4 to 8 rigs. A large scale operation demanded careful planning and continuous application of lessons learnt from the first phase which were successfully embedded and implemented.


Sign in / Sign up

Export Citation Format

Share Document