Casino pipeline: novel pipeline integrity inspection

2017 ◽  
Vol 57 (2) ◽  
pp. 603
Author(s):  
Steve Henzell ◽  
Fiona Read

The Casino offshore pipeline required inspection to demonstrate the integrity of the pipeline and allow the operating life of the pipeline to be extended. There were numerous challenges in performing a conventional internal pipeline inspection which would have required diver operations to install and operate subsea pig launchers. Two alternative inspection methods were used to inspect the high priority sections of the pipeline, at the pipeline tees and in the horizontal directionally drilled (HDD) section of pipeline at the coastline crossing.The pipeline tees and well flowlines were inspected using an external magnetic flux inspection tool deployed by remotely operated vehicle (ROV), to test for top-of-line corrosion. Bi-directional pigging from the onshore valve station, offshore for 30 km using gas from the host gas plant and then return to the shore using gas from the offshore wells allowed for inspection of the HDD pipeline with a total of 10 bi-direction pig runs completed. The pig position was accurately predicted by monitoring the operating conditions of the pipeline and confirmed by displacement past the subsea well closest to shore (Casino 5). The novel pigging methods brought significant benefits for cost, schedule and reduced EHS exposure by avoiding diver operations. The cost of the overall inspection program was less than 25% of the conventional inspection methods and was achieved a year earlier than if a dive support vessel (DSV) had been mobilised. The bi-directional pigging campaign proved to be highly successful.

2021 ◽  
Author(s):  
Formentini Federico ◽  
Luigi Foschi ◽  
Filippo Guidi ◽  
Ester Iannucci ◽  
Lorenzo Marchionni ◽  
...  

Abstract This paper is based on the experience made during the design and installation of an offshore pipeline recently completed in Indonesia, where a 24” subsea production pipeline (16km long in 70m water depth) was found susceptible during design to lateral buckling. To limit the development of excessive deformation within the acceptance criteria, a mitigation strategy based on interacting planned buckles has been adopted installing three Buckle Initiators (BI) along the pipeline route. Buckling is a well understood phenomenon. However, this project was characterized by major uncertainties mainly driven by soil characterization, soil-pipe interaction, seabed mobility and soil liquefaction. These uncertainties have played a key role in the in-service buckling design. A lot of engineering efforts have been spent to go through the screening between alternative concepts, the validation of the chosen solution and its detailed engineering phase. This paper discusses the main contributing factors and how the uncertainties have been tackled. The Buckle Initiators are quite large and heavy structures with two main bars: the first ramp has an inclination equal to 30° and the pipeline has been laid on it; a second horizontal ramp was used as sleeper to accommodate the development of the lateral buckle during the operating life. A rotating arm was also used to restrict the pipeline lay corridor on the inclined ramp guaranteeing a combined horizontal and vertical out-of-straightness in the as-laid configuration. The rotating arm has been released as soon as the pipeline passed the BI permitting the pipeline to slide freely over the two BI ramps. The foundation of the Buckle Initiator has a footprint surface of about 60m2 guaranteeing its stability for different soil types characterizing the three installation areas. This more complex solution was preferred with respect to a typical sleeper to increase the robustness of the system in terms of buckle mobilization. The design of the Buckle Initiator was a multidisciplinary activity where many novel concepts were developed and many issues were faced (i.e. pipeline laying on an inclined sleeper, anti-scouring system, foundation design, etc.). The Buckle Initiator design was focused on structural calculations against design loads expected during temporary and operating conditions, geotechnical verifications, installation analysis, pipeline configuration and fatigue assessment. This paper presents all main engineering aspects faced during design and first feedbacks from field after the pipeline installation.


2011 ◽  
Vol 51 (2) ◽  
pp. 697
Author(s):  
Michael Clark ◽  
John Claypool

Oil companies, partnerships and entities developed for the exploration and/or production of hydrocarbons typically invest for a reasonably certain period of time, with the assets projected to have little or no value at the end of their life cycle. Historically, production facilities were decommissioned as cost effectively as possible, with limited consideration of the cost of this practice being factored into the initial costs or operating budgets, and the salvage value of the scrap metal was applied to cover the cost of the demolition. Today, most oil and gas producers are required to account for the estimated future cost of dismantling and removing facilities and equipment, as well as restoring land to its previous condition. The estimated costs for future dismantling, removal, and restoration are different to other costs associated with the acquisition and use of productive assets. The impact of potential environmental expenses associated with these practices typically occurs after an asset has ceased production. Planning for environmental costs for asset retirement obligations (AROs) is ideally conducted during the asset's operating life. This is so that compliance costs and other operating expenses are recorded consistently in conformance with accounting policies and regulations. Tentatively identified AROs include: asbestos, batteries, PCB transformers, underground or above ground storage tanks, well abandonment, waste impoundments, mercury, and other components of an active producing facility. Operators need to identify specific performance requirements that may impose obligations on their organisation. Federal, state and local requirements need be considered, as they apply to specific operating conditions.


Author(s):  
Dale S. Grace

This paper describes a methodology to quantify scheduled and unscheduled maintenance costs and a software framework for estimating operations and maintenance (O&M) costs of combined-cycle power plants over their operating life. Scheduled maintenance costs consist primarily of replacement and repair of hot section components of the combustion turbine that occur during planned inspections and overhaul events. Scheduled maintenance costs can be estimated based on anticipated parts life, operating conditions and parts costs. Some degree of uncertainty exists, but the range of costs is fairly well understood. Unscheduled maintenance costs are not as readily defined. Experiential data of unplanned events from a large sampling of plants over time can be used to estimate unscheduled costs. Because of the wide variation in experience from unit to unit, a range of costs are anticipated. This paper includes a description of a study of F-class combined-cycle plant data that provides the basis for defining a cost distribution of unscheduled maintenance costs. In addition, the reliability and availability statistics of these plants are used to estimate lost generation revenue due to unplanned outages, which can be significantly higher than the cost of performing the repairs to return the unit to service.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


2020 ◽  
Vol 20 (10) ◽  
pp. 1682-1695
Author(s):  
Foziyah Zakir ◽  
Kanchan Kohli ◽  
Farhan J. Ahmad ◽  
Zeenat Iqbal ◽  
Adil Ahmad

Osteoporosis is a progressive bone disease that remains unnoticed until a fracture occurs. It is more predominant in the older age population, particularly in females due to reduced estrogen levels and ultimately limited calcium absorption. The cost burden of treating osteoporotic fractures is too high, therefore, primary focus should be treatment at an early stage. Most of the marketed drugs are available as oral delivery dosage forms. The complications, as well as patient non-compliance, limit the use of oral therapy for prolonged drug delivery. Transdermal delivery systems seem to be a promising approach for the delivery of anti-osteoporotic active moieties. One of the confronting barriers is the passage of drugs through the SC layers followed by penetration to deeper dermal layers. The review focuses on how anti-osteoporotic drugs can be molded through different approaches so that they can be exploited for the skin to systemic delivery. Insights into the various challenges in transdermal delivery and how the novel delivery system can be used to overcome these have also been detailed.


1996 ◽  
Vol 32 (3) ◽  
pp. 1581-1584 ◽  
Author(s):  
G. Katragadda ◽  
W. Lord ◽  
Y.S. Sun ◽  
S. Udpa ◽  
L. Udpa

Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


2021 ◽  
Author(s):  
Sujet Phodapol ◽  
Tachadol Suthisomboon ◽  
Pong Kosanunt ◽  
Ravipas Vongasemjit ◽  
Petch Janbanjong ◽  
...  

Abstract Passive and active hybrid pipeline inspection gauges (PIGs) have been used for in-pipe inspection. While a passive PIG cannot control its speed, the hybrid version can achieve this by using an integrated valve specifically designed and embedded in the PIG. This study proposes a generic new method for speed adaptation in PIGs (called MC-PIG) by introducing a generic, modular, controllable, external valve unit add-on for attaching to existing conventional (passive) PIGs with minimal change. The MC-PIG method is based on the principle of morphological computation with closed-loop control. It is achieved by regulating/computing the PIG's morphology (i.e., a modular rotary valve unit add-on) to control bypass flow. Adjustment of the valve angle can affect the flow rate passing through the PIG, resulting in speed regulation ability. We use numerical simulation with computational fluid dynamics (CFD) to investigate and analyze the speed of a simulated PIG with the valve unit adjusted by proportional-integral (PI) control under various in-pipe pressure conditions. Our simulation experiments are performed under different operating conditions in three pipe sizes (16″, 18″, and 22″ in diameter) to manifest the speed adaptation of the PIG with the modular valve unit add-on and PI control. Our results show that the PIG can effectively perform real-time adaptation (i.e., adjusting its valve angle) to maintain the desired speed. The valve design can be adjusted from 5 degrees (closed valve, resulting in high moving speed) to a maximum of 45 degrees (fully open valve, resulting in low moving speed). The speed of the PIG can be regulated from 0.59 m/s to 3.88 m/s in a 16″ pipe at 4.38 m/s (in-pipe fluid velocity), 2500 kPa (operating pressure), and 62 °C (operating temperature). Finally, the MC-PIG method is validated using a 3D-printed prototype in a 6″ pipe. Through the investigation, we observed that two factors influence speed adaptation; the pressure drop coefficient and friction of the PIG and pipeline. In conclusion, the results from the simulation and prototype show close characteristics with an acceptable error.


Sign in / Sign up

Export Citation Format

Share Document