CFD-Based Energy Improvement of a Parametric Blade Model for a Francis Turbine Runner

Author(s):  
Jose´ Manuel Franco-Nava ◽  
Erik Rosado-Tamariz ◽  
Jose´ Manuel Ferna´ndez-Da´vila ◽  
Reynaldo Rangel-Espinosa

The computational fluid dynamic (CFD) based energy improvement of the parametric blade model for a Francis turbine runner is presented. The evaluation of the energy improved uses the results of CFD based optimization of a hydraulic Francis turbine runner. The parametric runner model used by the CFD based optimization process was obtained by applying a parametric blade modeller for turbomachinery based on a geometric reference model. This parametric runner model and the optimization process were computed by using a three dimensional Navier-Stoke commercial turbomachinery oriented CFD code. The flow within hydraulic turbines has a thin boundary layer and noticeable pressure gradients. Hence, the CFD computations were carried out using the Sparlat-Allmaras turbulence model. The aim of the optimization process was improve the performance of the machine. This process was computed by a CFD code integrated environment which combines genetic algorithms and a trained artificial neural network. After optimization cycle convergence, an increment not only in efficiency but also in power was obtained. The energy that is transferred to the runner blade and transformed in torque and power was obtained by using CFD results. From pressure distribution along the normalized arc length of the runner blade for three operating conditions (100%, 85% and, 75% of load) the energy distribution was computed not only for the reference runner but also for the optimized parametric model of the turbine runner. Finally, the averaged energy saved for the same operating conditions was evaluated. Results have shown that application of CFD based optimization can modify and improve runners design so as to increase the efficiency and power of installed hydraulic power stations.

Author(s):  
Xiaojing Wu ◽  
Yulin Wu ◽  
Shuhong Liu

Energy loss inside a Francis turbine runner is analyzed with dissipation function in this paper. The dissipation rate of a Newtonian flow with constant shear viscous has three constituents from dilation, vorticity, and surface strain, which is derived from kinetic energy equation presented in this paper. A commercial N-S equation solver has been employed for 3D turbulent flow simulation with a model Francis turbine, and three different operating conditions are chosen for comparison, which are part load, rated load, and excessive load. The results from simulation have been compared with model experiments to validate their preciseness and reliability. The distribution of dissipation constituents on runner blade surface have been extracted from the above simulation results. The distinction of these constituents can be used to identify flow structures inside runner. The flow energy loss is determined by dissipation function, thus it can affect the hydraulic efficiency of turbine runner. From the above results, it can be seen that what causes the energy loss, which is the dominant factor, and where it has the highest value. Thus this analysis based on dissipation function can be used for flow diagnosis inside the blade channel, and tell us which part of the blade should be improved to reduce the energy loss.


2014 ◽  
Vol 709 ◽  
pp. 41-45
Author(s):  
Kan Kan ◽  
Yuan Zheng ◽  
Xin Zhang ◽  
Bin Sun ◽  
Hui Wen Liu

This paper does unidirectional fluid-solid coupling calculation on the runner strength under three designed head loading conditions of a certain Francis turbine in the north-eastern China. The water pressure on the blade in the flow fields of different operating conditions is calculated by means of CFD software CFX. With the help of ansys workbench, the water pressure is loaded to the blade as structural load to conclude the static stress distribution and deformation of the runner under different operating conditions. The results show that the maximum static stress increases with the rise of the flow and appears near the influent side of the blade connected to the runner crown; the maximum deformation increases with the rise of the flow and appears on the band. The results provides effective basis for the structural design and safe operation of the Francis turbine.


2016 ◽  
Vol 842 ◽  
pp. 164-177 ◽  
Author(s):  
Indra Djodikusumo ◽  
I. Nengah Diasta ◽  
Iwan Sanjaya Awaluddin

This paper aims to demonstrate how to model, mesh and simulate a hydraulic propeller turbine runner based on the geometrical specification of the runner blade. Modeling process is divided into preparation and implementation phase. Preparation phase illustrates how to develop stream surfaces and passages, how to create and transform meanline and how to create an rtzt file. The profile in rtzt file has a certain fix thickness which has to be altered later. Implementation phase describes operations necessary in creating a propeller runner model in ANSYS BladeGen which consist of importing rtzt file, modifying the trailing edge properties and altering profile thickness distribution to that of 4 digits NACA airfoil standard. Grid is generated in ANSYS TurboGrid utilizing ATM Optimized topology. CFD simulation is done using the ANSYS Fluent with pressure inlet and pressure outlet boundary conditions and k-ε turbulence model. Hydraulic efficiency of the runner is calculated utilizing Turbo Topology module in ANSYS Fluent. The authors will share the advantages that may be obtained by using ANSYS BladeGen compared with the use of general CAD Systems.


2018 ◽  
Vol 8 (12) ◽  
pp. 2505 ◽  
Author(s):  
Jean Decaix ◽  
Vlad Hasmatuchi ◽  
Maximilian Titzschkau ◽  
Cécile Münch-Alligné

Due to the integration of new renewable energies, the electrical grid undergoes instabilities. Hydroelectric power plants are key players for grid control thanks to pumped storage power plants. However, this objective requires extending the operating range of the machines and increasing the number of start-up, stand-by, and shut-down procedures, which reduces the lifespan of the machines. CFD based on standard URANS turbulence modeling is currently able to predict accurately the performances of the hydraulic turbines for operating points close to the Best Efficiency Point (BEP). However, far from the BEP, the standard URANS approach is less efficient to capture the dynamics of 3D flows. The current study focuses on a hydraulic turbine, which has been investigated at the BEP and at the Speed-No-Load (SNL) operating conditions. Several “advanced” URANS models such as the Scale-Adaptive Simulation (SAS) SST k - ω and the BSL- EARSM have been considered and compared with the SST k - ω model. The main conclusion of this study is that, at the SNL operating condition, the prediction of the topology and the dynamics of the flow on the suction side of the runner blade channels close to the trailing edge are influenced by the turbulence model.


Author(s):  
Philipp Amtsfeld ◽  
Michael Lockan ◽  
Dieter Bestle ◽  
Marcus Meyer

State-of-the-art aerodynamic blade design processes mainly consist of two phases: optimal design of 2D blade sections and then stacking them optimally along a three-dimensional stacking line. Such a quasi-3D approach, however, misses the potential of finding optimal blade designs especially in the presence of strong 3D flow effects. Therefore, in this paper a blade optimization process is demonstrated which uses an integral 3D blade model and 3D CFD analysis to account for three-dimensional flow features. Special emphasis is put on shortening design iterations and reducing design costs in order to obtain a rapid automatic optimization process for fully 3D aerodynamic turbine blade design which can be applied in an early design phase already. The three-dimensional parametric blade model is determined by up to 80 design variables. At first, the most important design parameters are chosen based on a non-linear sensitivity analysis. The objective of the subsequent optimization process is to maximize isentropic efficiency while fulfilling a minimal set of constraints. The CFD model contains both important geometric features like tip gaps and fillets, and cooling and leakage flows to sufficiently represent real flow conditions. Two acceleration strategies are used to cut down the turn-around time from weeks to days. Firstly, the aerodynamic multi-stage design evaluation is significantly accelerated with a GPU-based RANS solver running on a multi-GPU workstation. Secondly, a response surface method is used to reduce the number of expensive function evaluations during the optimization process. The feasibility is demonstrated by an application to a blade which is a part of a research rig similar to the high pressure turbine of a small civil jet engine. The proposed approach enables an automatic aerodynamic design of this 3D blade on a single workstation within few days.


Author(s):  
Jose´ Manuel Franco-Nava ◽  
Oscar Dorantes-Go´mez ◽  
Erik Rosado-Tamariz ◽  
Jose´ Manuel Ferna´ndez-Da´vila ◽  
Reynaldo Rangel-Espinosa

Application of two mayor design tools, Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD), for the performance improvement of a 76 MW Francis turbine runner is presented. In order to improve the performance of the runner, not only a CFD based optimization for the runner but also its structural integrity evaluation was carried out. In this paper, a number of analyses included within the design tools-based runner optimization process are presented. Initially, a reference condition for the fluid behaviour through turbine components was carried out by means of the computation of fluid conditions through the spiral case and stays vanes, followed by CFD-based fluid behaviour for the wicket so as to include the flow effects induced by these components in the final CFD analysis for the runner. All CFD computations were generated within the three dimensional Navier-Stoke commercial turbomachinery oriented CFD code FINE™/Turbo from NUMECA. The whole hydraulic turbine performance was then compared against actual data from a medium-head Francis type hydro turbine (76 MW). Then, CFD-based flow induced stresses in the turbine runner were computed by using a three dimensional finite element model built within the FEA commercial code ANSYS. Appropriate boundary conditions were set in order to obtain the results due to the different type loads (pressure and centrifugal force). The FEM model was able to capture the pressure gradients on the blade surfaces obtained from the CFD results. Improvement of efficiency and power for the runner was computed by using a parametric model built within 3D CFD code integrated environment FINETM/Design3D from NUMECA which combines genetic algorithms and a trained artificial neural network. During the optimization process the artificial neural network is trained with a database of geometries and their respective CFD computations in order to determine the optimum geometry for a given objective function. The optimisation process and the trend curve of the optimization or design cycle that included 29 parameters (corresponding to the control points of runner blade primary sections) which could vary during the process is presented. Finally, the flow induced stresses of the optimized Francis turbine runner was computed so as to evaluate the final blade geometry modifications related to the efficiency and power improvement.


2013 ◽  
Vol 655-657 ◽  
pp. 449-456
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical prediction of cavitation erosion on a Francis turbine runner using CFD code. The SST turbulence model is employed in the Reynolds averaged Navier–Stokes equations in this study. A mixture assumption and a finite rate mass transfer model were introduced. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators(PISO) procedure. Comparison the numerical prediction results with a real runner with cavitation damage, the region of higher volume fraction by simulation with the region of runner cavitation damage is consistent.


Author(s):  
Marco Tulio C. Faria ◽  
Fernando R. Queiroz ◽  
Eduardo B. Medeiros ◽  
Carlos B. Martinez

This work presents an experimental study about the application of acoustic emission (AE) techniques in the monitoring of cavitation erosion mass loss in small Francis turbines. A vertical Francis turbine test bench is specially devised to perform some experiments designed to evaluate the influence of small surface mass losses on turbine blades in the acoustic emission signals. An AE wideband transducer is employed in the test bench instrumentation system. In order to evaluate the AE levels associated with the turbine erosion stages, a small defect is introduced into the turbine runner. This defect is intended to simulate a small mass loss in the turbine runner. The measurements of the AE signals are performed in the Turbine Francis model at two situations: 1) turbine without defect, which means that the runner blades are free of apparent geometric imperfections; 2) turbine with defect, which is represented by a small hole drilled into a runner blade. The AE transducer is installed on the turbine draft tube and the AE measurements are performed at several operating conditions. The preliminary results obtained for the AE amplitude in this investigation show that the small defect introduced into a runner blade causes variations in the AE levels measured in the experiments, confirming that there is a large potential for the application of AE monitoring techniques in the accurate evaluation of cavitation wear on hydraulic turbines in field.


2013 ◽  
Vol 456 ◽  
pp. 207-210
Author(s):  
Fang He

This paper presents a vibration prediction method for Francis turbine: Provided with advanced CFX software, Numerical simulation of movable guide vane and Turbine runner’s internal flow state. From the source of hydraulic vibration, Focus on numerical analysis, numerical simulation for the cutting thickness of the runner blade. After analysis of the influence of the blade of hydraulic vibration. To explore new ways for the hydro turbine control hydraulic vibration.


2014 ◽  
Vol 81 (6) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.


Sign in / Sign up

Export Citation Format

Share Document