Residual Stress Analysis of Tube Attachment Weld in Pressure Vessel Forging: Comparison of FE Predictions and Measurements

Author(s):  
P. R. Hurrell ◽  
N. A. Leggatt ◽  
R. J. Dennis

Residual stresses were analysed in a partial penetration weld attaching a tube inside a thick pressure vessel forging, both made of SA508 steel. 2D finite element (FE) analyses methods were used to simulate this multi-pass manual TIG weld. The weld preps are buttered and the forging subsequently heat-treated prior to making the closure weld. Buttering of the forging J-prep and subsequent PWHT creep stress relaxation were modelled. Generally the buttering was found to have minimal influence on the final stress state, although some difference in local peak stress and stress gradients were calculated. Representative test blocks were manufactured, with and without buttered weld preps. Each test block contained two tube penetrations and attachment welds, in order to examine interaction effects. Welding details were captured and peak temperatures recorded by thermocouples were reasonably consistent with the FE model predictions. Surface stresses were measured both in the as-welded condition and after machining, using the hole drilling strain gauge method. Good agreement with FE results was achieved in surface stress levels in the vessel forging, buttering and tube wall. However the 2D model overestimates weld hoop stresses. Large yield magnitude tensile stresses in the vicinity of the joint are balanced by lower compressive stresses in the surrounding PV forging. Interaction effects between the stress fields produced by adjacent tube welds are negligible.

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


Author(s):  
Tae-young Ryu ◽  
J. B. Choi ◽  
Kyoung S. Lee

For decades, the PWSCC on the penetration nozzles like BMI and CEDM nozzles are widely occurred all around the world. The PWSCC is dependent on the tensile stress condition, specific materials and chemical environment. Therefore, to evaluate the severity of the PWSCC, prediction of the welding residual stress on the J-groove welding part in the penetration nozzles is essential. Residual stress can be measured by using experimental methods like deep-hole drilling and X-ray diffraction, etc. However, the results of experimental methods are quite doubtable and these methods are hard to apply on the actual equipment. Therefore, computational approach like the FE analysis has been considered. The FE analysis results are very sensitive to the FE model density and analysis conditions. In this paper the optimized FE model for the residual stress analysis will be developed in the case of CEDM penetration nozzle. The optimized parameters contains bead number and mesh density. The bead numbers along the longitudinal and circumferential directions are considered and the mesh density in each the bead is also considered. The model will be verified by numerical error control.


Author(s):  
Xin Ma ◽  
Zhongpei Ning ◽  
Honggang Chen ◽  
Jinyang Zheng

Ultra-High Pressure Vessel (UHPV) with self-protective Flat Steel Ribbons (FSR) wound and Tooth-Locked Quick-Actuating (TLQA) end closure is a new type of vessel developed in recent years. When the structural parameters of its TLQA and Buttress Thread (BT) end closure are determined using the ordinary engineering design method, Design by Analysis (DBA) shows that the requirement on fatigue life of this unique UHPV could hardly be satisfied. To solve the above problem, an integrated FE modeling method has been proposed in this paper. To investigate the fatigue life of TLQA and BT end closures of a full-scale unique UHPV, a three-dimensional (3-D) Finite Element (FE) solid model and a two-dimensional (2-D) FE axisymmetric model are built in FE software ANSYS, respectively., Nonlinear FE analysis and orthogonal testing are both conducted to obtain the optimum structure strength, in which the peak stress in the TLQA or BT end closure of the unique UHPV is taken as an optimal target. The important parameters, such as root structure of teeth, contact pressure between the pre-stressed collar and the cylinder end, the knuckle radius, the buttress thread profile and the local structure of the cylinder, are optimized. As a result, both the stress distribution at the root of teeth and the axial load carried by each thread are improved. Therefore, the load-carrying capacity of the end closure has been reinforced and the fatigue life of unique UHPV has been extended.


2004 ◽  
Vol 126 (1) ◽  
pp. 129-135 ◽  
Author(s):  
A. Tamer O¨zdemir ◽  
Lyndon Edwards

Many analytical and experimental techniques utilize two-dimensional analysis approach to determine residual strains and stresses at cold expanded holes. In the present work, a recently developed technique of hole drilling was used to sketch stress patterns in three-dimension at a particular orientation of split-sleeve cold expanded holes. At this orientation, similarities were obtained in between the present results and the stress distributions measured by Fourier series expansion, neutron diffraction methods and prediction of a recent finite element analysis. It is clear that after cold expansion there are significant variations in residual hoop stresses at different sections through the thickness of the plate. However, finish reaming and de-burring around the hole redistributes residual stresses such that hoop stresses adjacent to the hole along its entire length becomes more compressive and almost uniform. Finally a correlation between stress pattern and crack profile, displaying the through-thickness effect was shown.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Stefano Travaglino ◽  
Kyle Murdock ◽  
Anh Tran ◽  
Caitlin Martin ◽  
Liang Liang ◽  
...  

Abstract In this study, a Bayesian optimization (BO) based computational framework is developed to investigate the design of transcatheter aortic valve (TAV) leaflets and to optimize leaflet geometry such that its peak stress under the blood pressure of 120 mmHg is reduced. A generic TAV model is parametrized by mathematical equations describing its 2D shape and its 3D stent-leaflet assembly line. Material properties previously obtained for bovine pericardium (BP) and porcine pericardium (PP) via a combination of flexural and biaxial tensile testing were incorporated into the finite element (FE) model of TAV. A BO approach was employed to investigate about 1000 leaflet designs for each material under the nominal circular deployment and physiological loading conditions. The optimal parameter values of the TAV model were obtained, corresponding to leaflet shapes that can reduce the peak stress by 16.7% in BP and 18.0% in PP, compared with that from the initial generic TAV model. Furthermore, it was observed that while peak stresses tend to concentrate near the stent-leaflet attachment edge, optimized geometries benefit from more uniform stress distributions in the leaflet circumferential direction. Our analysis also showed that increasing leaflet contact area redistributes peak stresses to the belly region contributing to peak stress reduction. The results from this study may inspire new TAV designs that can have better durability.


Author(s):  
Richard C. Biel ◽  
Gregory Cano

Adoption of composite reinforced pressure vessels (CRPV) into the ASME Boiler and Pressure Vessel Code represented advancement in the technology of pressure vessels. The advantage of this construction technique is that the weight of a CRPV for compressed gas service built may be reduced to about one-half conventional pressure vessel of the same capacity. The concept of hoop wrapping fibers in a plastic composite (>90% fiber fill) makes full utilization of the fiber strength as the fibers share the hoop load with a metal cylinder. With reduced hoop stresses in the metal, a substantial reduction in wall thickness is attainable. The process of adoption of this technology presented several challenges and some robust administrative hurdles. These included coordination with ASME BPV Code Section X for the composite application and Section VIII for the steel design and overall acceptance of the Case. The most vexing technical challenge was the inspection of an unfinished weld on the inside of the shell from the outside of the shell. The next challenge was to gain consensus on the testing criteria for the acceptance of finished vessels. Case 2390 was drafted in the winter of 2000 and spring of 2001 and approved for publication after nine revisions with an approval date of October 9, 2002. The Case was subsequently adopted into the body of ASME BPV Code Section VIII, Division 3 [1] (VIII-3) in the 2010 edition.


Author(s):  
J.-S. Park ◽  
J.-M. Kim ◽  
G.-H. Sohn ◽  
Y.-H. Kim

This study is concerned with the mechanics analysis of residual stress improvement by the heat sink method applied to a dissimilar metal weld (DMW) for the use in nuclear power plants. The DMW joint considered here is composed of ferritic low-alloy steel nozzle, austenitic stainless steel safe-end, and nickel-base alloy A52 weld metal. To prepare the DMW joint with a narrow-gap, the gas tungsten arc welding (GTAW) process is utilized, and the heat sink method is employed to control thermal gradients developed in the critical region of work pieces during welding. Weld residual stresses are computed by the non-linear thermal elasto-plastic analysis using the axisymmetric finite element (FE) model, for which temperature-dependent thermal and mechanical properties of the materials are considered. A full-scale mock-up test is conducted to validate analytical solution for the DMW joint, and residual stresses are measured by using the hole-drilling method. Results of the FE modeling and mock-up test for the DMW joint are compared and effects of the heat sink method are discussed. It is found that a significant amount of residual compressive stresses can be developed on the inner surface of the DMW joint by using the heat sink method, which can effectively reduce the susceptibility of the welded materials to stress corrosion or fatigue cracking.


Author(s):  
D. Zhang ◽  
A. M. Waas ◽  
M. Pankow ◽  
C. F. Yen ◽  
S. Ghiorse

The flexural response of a three-dimensional (3D) layer-to-layer orthogonal interlocked textile composite has been investigated under quasi-static three-point bending. Fiber tow kinking on the compressive side of the flexed specimens has been found to be a strength limiting mechanism for both warp and weft panels. The digital image correlation (DIC) technique has been utilized to map the deformation and identify the matrix microcracking on the tensile side prior to the peak load in the warp direction loaded panels. It has been shown that the geometrical characteristics of textile reinforcement play a key role in the mechanical response of this class of material. A 3D local–global finite element (FE) model that reflects the textile architectures has been proposed to successfully capture the surface strain localizations in the predamage region. To analyze the kink banding event, the fiber tow is modeled as an inelastic degrading homogenized orthotropic solid in a state of plane stress based on Schapery Theory (ST). The predicted peak stress is in agreement with the tow kinking stress obtained from the 3D FE model.


Sign in / Sign up

Export Citation Format

Share Document