Successful Sealing of Heat Exchangers Due to the Implementation of New Technology in a Gasket System

Author(s):  
Julie L. Simonton ◽  
David W. Reeves

Research into the historical use and subsequent failure of double-jacketed type gaskets in heat exchangers has yielded the characteristics necessary for leak elimination and the realization that maintaining a seal cannot be achieved by gasket specification alone. An evaluation of the heat exchanger, stud load, tightening method, gasket specification, proper installation procedures, process conditions, as well as stud selection must each be carefully considered to consistently create an effective seal. This paper highlights field test data from a refinery on the differential thermal expansion of flanges and how the gasketed connection is affected. Laboratory test data, specifically Radial Shear Tightness Test, or Ra.S.T., data, which mimics the radial shearing effects on a gasket in a heat exchanger, as well as verifying the effects on the gaskets in the field, is also presented. The details of the new technology in a gasket system for heat exchangers, perfected in conjunction with Chevron and Lamons Gasket Company, will be presented along with its successful implementation at a major petrochemical refinery.

2021 ◽  
Author(s):  
Andrew Robert Farrell ◽  
Dario Marcello Frigo ◽  
Gordon Michael Graham ◽  
Robert Stalker ◽  
Ernesto Ivan Diestre Redondo ◽  
...  

Abstract Fouling of heat exchangers and production of stable emulsions in desalting units can present significant challenges in refinery operations. Often these difficulties occur due to the concurrent processing of two or more crude oils that are incompatible under process conditions. This paper describes a significant development in laboratory techniques for studying these issues and evaluating mitigation strategies. Asphaltenes compatibility was evaluated for oil mixtures that may be co-processed in the refinery using a deposition flow rig, and the results were compared with those obtained with more conventional tests: blending stability analysis by light scattering and various screening methods. The flow rig mimics the process conditions (elevated pressure, high temperature, flow-induced shear) and identifies whether deposition or precipitation will occur. The former can cause fouling of heat exchangers whereas the latter produces solids that can stabilize emulsions in the desalter. By varying the proportions of oils that were co-injected into the deposition flow rig, the range within which mixtures were unstable was found. By flowing through a capillary (to mimic a heat exchanger) and in-line filter, it was possible to identify whether precipitation of suspended flocs or fouling of the heat exchanger itself was the likely issue for each mixture. Emulsion-stability tests were conducted using a pressurized rig with an ersatz separator to mimic the desalting unit; results were compared with those obtained in conventional, ambient-pressure bottle tests. Oil(s) and refinery wash water were injected, mixed under representative shear, and allowed to separate within the typical residence time of the desalter. Chemical additives were tested to identify those that were effective at controlling any observed problems. Results obtained in either flow rig (using representative pressure, temperature, and shear) did not always match those obtained using conventional methods. Asphaltenes fouling occurred under conditions where it was not predicted by screening tests that were conducted at conditions not representative of the process and did not occur under conditions where it was predicted. Differences were also observed between the emulsion stability observed in bottle versus rig tests, though these should be viewed as complementary techniques. This paper presents new laboratory techniques for the prediction and prevention of refinery fouling and emulsion stability. They mimic conditions in the facilities much better than those typically used to date.


1984 ◽  
Vol 106 (3) ◽  
pp. 279-285
Author(s):  
F. R. Weiner

This paper describes the analysis and design of the five kinds of heat exchangers used in the thermal storage subsystem of the 10 MWe Solar Central Receiver Pilot Plant, now becoming more known as “Solar One.” The paper discusses the practices and standards used in the designs of the heat exchangers, lists the heat exchanger design requirements, and discusses the process conditions. The design assumptions and constraints, the geometrical considerations, and the tradeoff studies that were conducted to optimize the designs are also discussed. A description of each heat exchanger reveals the final design solution. Novel and unique features of a power plant that must operate on a daily sun-cycle are identified.


1952 ◽  
Vol 19 (2) ◽  
pp. 159-166
Author(s):  
K. A. Gardner

Abstract It is shown that “fixed” tube sheets may be designed in exactly the same manner as “floating” tube sheets with the same boundary restraint, provided that a fictitious uniform “equivalent design pressure” is used in the calculations instead of the actual hydrostatic pressure. This equivalent pressure is evaluated in terms of tube-side pressure, shell-side pressure, differential thermal expansion, and the condition of boundary restraint. The design factors for all tube sheets presented in an earlier paper are shown to be well represented by very simple expressions when the fundamental design parameter xa becomes large.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2695
Author(s):  
Ju O Kang ◽  
Sung Chul Kim

The application of the thermoelectric generator (TEG) system to various industrial facilities has been explored to reduce greenhouse gas emissions and improve the efficiency of such industrial facilities. In this study, numerical analysis was conducted according to the types and geometry of heat exchangers and manufacture process conditions to recover waste heat from a billet casting process using the TEG system. The total heat absorption increased by up to 10.0% depending on the geometry of the heat exchanger. Under natural convection conditions, the total heat absorption increased by up to 45.5%. As the minimum temperature increased, the effective area increased by five times. When a copper heat exchanger of direct conduction type was used, the difference between the maximum and minimum temperatures was significantly reduced compared to when a stainless steel heat exchanger was used. This confirmed that the copper heat exchanger is more favorable for securing a uniform heat exchanger temperature. A prototype TEG system, including a thermosyphon heat exchanger, was installed and a maximum power of 8.0 W and power density of 740 W/m2 was achieved at a hot side temperature of 130 °C. The results suggest the possibility of recovering waste heat from billet casting processes.


Author(s):  
George Hall ◽  
James Marthinuss

This paper will discuss air-cooled compact heat exchanger design using published data. Kays & London’s “Compact Heat Exchangers” [1] contains measured heat transfer and pressure drop data on a variety of circular and rectangular passages including circular tubes, tube banks, straight fins, louvered fins, strip or lanced offset fins, wavy fins and pin fins. While “Compact Heat Exchangers” is the benchmark for air cooled heat exchanger test data it makes no attempt to summarize the results or steer the thermal designer to an optimized design based on the different factors or combination of heat transfer, pressure drop, size, weight, or even cost. Using this reduced data and the analytical solutions provided highly efficient compact heat exchangers could be designed. This paper will guide a thermal engineer toward this optimized design without having to run trade studies on every possible heat exchanger design configuration. Typical applications of published fin data in the aerospace and military electronics include electronics cold plates, card rack walls and air-to-air heat exchangers using fan driven and ECS driven air. Airborne electronics often require extremely dense packaging techniques to fit all the required functions into the available volume. While leaving little room for cooling hardware this also drives power densities up to levels (20 W/sq-cm) that require highly efficient heat transfer techniques. Several design issues are discussed including pressure drop, heat transfer, compactness, axial conduction, flow distribution and passage irregularities (bosses). Comparisons between fin performance are made and conclusions are drawn about the applicability of each type of fin to avionics thermal management.


Author(s):  
Bas Megens

From a safety study a concern was raised about the probability of instant tube rupture in 300 bar heat exchangers in LDPE plants. A study has been performed in a multidisciplinary team to determine the potential failure mechanisms. Among the possible potential failure mechanisms those which can cause instant tube rupture were identified. Based on these potential failure mechanisms, non-destructive examinations were performed to investigate if these failure mechanisms were present and online acoustic emission measurements were performed to investigate during which process conditions the damage occurred. Eventually a cooler was dismantled to investigate the root cause of the damage. This paper describes the entire study.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
J. F. Zhou ◽  
Y. Li ◽  
B. Q. Gu ◽  
C. L. Shao

Shell-and-tube heat exchangers are the most common type of heat exchangers in oil refineries and other large chemical processes. In this manuscript, we demonstrate that the shell-side flow in a cylindrical shell was not as homogeneous as that in a rectangular shell. According to the periodic flow field and the arrangement of tubes in the rectangular shell, the solid-fluid coupling heat transfer model consisting of a single tube section and the outer and inner fluids was developed to represent the whole heat exchanger. Using this model, the relationship among four temperatures, namely the inlet and outlet temperatures of tube-side fluid and the upstream and downstream temperatures of shell-side fluid, was established. By dividing each tube into several tube sections at the sites of baffles, a method for predicting the temperature field of the rectangular shell-and-tube heat exchanger was proposed. Based on the node temperature correlation, all the node temperatures were obtained by iterative computation using the established relationship between the four temperatures and the operating conditions. It was found that the temperature distribution of the fluid in tube was approximately linear along axial direction, but the temperature of tube showed nonlinear regularity. The axial deformation compatibility condition for the tube bundle and shell was considered when resolving the stresses in tubes. For the model established in this paper, the mean temperature of the tube at lower position was found to be larger than that at higher position; hence the thermal expansion of the tube at the lower end is larger. In the case the tube-side fluid was heated, all tubes were pulled because of the larger axial thermal expansion of shell, and the stress in the tube with higher temperature is smaller because of the smaller strain.


Author(s):  
Jose´ C. Veiga ◽  
Nelson Kavanagh ◽  
David Reeves

Due to the high incidence of leaks in Shell and Tube Heat Exchanges that are in thermal cycling service, there have been studies of the suitability of gasket styles for this kind of application. This paper researches several gasket styles in a test rig developed to simulate the radial shear caused by the differential thermal expansion of the flanges in a Heat Exchanger.


Author(s):  
Terry J. Hendricks ◽  
Bryan Mcenerney ◽  
Fivos Drymiotis ◽  
Ben Furst ◽  
Abhibit Shevade

Recent national energy usage studies by Lawrence Livermore National Laboratory in 2015 [1] show that there is approximately 59 Quads (1015 Btu’s) of waste thermal energy throughout various industrial, residential, power generation, and transportation sectors of the U.S. economy. Thermoelectric energy recovery is one important technology for recovering this waste thermal energy in high-temperature industrial, transportation and military energy systems. Thermoelectric generator (TEG) systems in these applications require high performance hot-side and cold-side heat exchangers to provide the critical temperature differential and transfer the required thermal energy. High performance hot-side heat exchangers in these systems are often metal-based due to requirements for high-temperature operation, strength at temperature, corrosion resistance, and chemical stability. However, the generally selected metal-based hot-side heat exchangers (i.e., Inconels, Stainless Steels) suffer from low thermal conductivity, high thermal expansion, and high density, which degrades their thermal performance, leads to high thermal-expansion-driven stresses, and creates relatively high mass/high volume (i.e., low power density) TEG systems that are then difficult to fabricate and integrate into viable energy recovery systems. This paper describes the design and testing of a new, high-temperature minichannel graphite heat exchanger designed for operation up to 500°C that is a critical element of a high-power-density TEG power system for aircraft energy recovery. This high-performance graphite heat exchanger represents a new state-of-the-art standard in high-temperature heat exchangers for TEG systems, which provides higher thermal transport, less thermal expansion at operation, lower system level stresses on TE components, and a lighter weight TEG system. This new heat exchanger creates a new design paradigm in TEG system design for terrestrial energy recovery and potential NASA technology infusion into terrestrial energy system applications. This paper will present and discuss the key heat transfer, pressure drop, pumping power analyses and design tradeoffs that created this unique design. Heat transfer and pressure drop modeling was performed with both empirical models based on known heat transfer and friction factor correlations and COMSOL thermal/fluid dynamic modeling of the graphite heat exchanger structure. We will also discuss resulting thermal transport and heat fluxes predicted at the TEG interface level. Heat exchanger performance testing was performed under simulated operating conditions and correlation with test data at the anticipated operating temperature conditions will be presented and discussed.


2019 ◽  
Vol 28 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
Gitte Keidser ◽  
Nicole Matthews ◽  
Elizabeth Convery

Purpose The aim of this study was to examine how hearing aid candidates perceive user-driven and app-controlled hearing aids and the effect these concepts have on traditional hearing health care delivery. Method Eleven adults (3 women, 8 men), recruited among 60 participants who had completed a research study evaluating an app-controlled, self-fitting hearing aid for 12 weeks, participated in a semistructured interview. Participants were over 55 years of age and had varied experience with hearing aids and smartphones. A template analysis was applied to data. Results Five themes emerged from the interviews: (a) prerequisites to the successful implementation of user-driven and app-controlled technologies, (b) benefits and advantages of user-driven and app-controlled technologies, (c) barriers to the acceptance and use of user-driven and app-controlled technologies, (d) beliefs that age is a significant factor in how well people will adopt new technology, and (e) consequences that flow from the adoption of user-driven and app-controlled technologies. Specifically, suggested benefits of the technology included fostering empowerment and providing cheaper and more discrete options, while challenges included lack of technological self-efficacy among older adults. Training and support were emphasized as necessary for successful adaptation and were suggested to be a focus of audiologic services in the future. Conclusion User perceptions of user-driven and app-controlled hearing technologies challenge the audiologic profession to provide adequate support and training for use of the technology and manufacturers to make the technology more accessible to older people.


Sign in / Sign up

Export Citation Format

Share Document