Acoustic-Structural Coupling in Pipework

Author(s):  
Hugh Goyder

If an acoustic resonance is set up in a pipework system then it may cause structural vibration which can lead to a catastrophic fatigue failure. An investigation is made into the coupling between acoustic waves and pipework stress with the objective of developing a simple method for determining if stresses are excessive. The analysis of the coupled acoustic and structural vibration results in a two-degree-of-freedom model with two natural frequencies and two damping ratios. This model is impractical as an assessment tool because the natural frequencies and damping ratios are either not known at all or are only known imperfectly. The model is therefore manipulated to give the stress corresponding to the most unfavourable conditions for the natural frequencies. This results in a useful assessment equation which may be used in practical circumstances. Comparisons are made with an alternative assessment method based on uncoupled behaviour.

Author(s):  
Anne-Lise Fiquet ◽  
Agathe Vercoutter ◽  
Nicolas Buffaz ◽  
Stéphane Aubert ◽  
Christoph Brandstetter

Abstract Significant non-synchronous blade vibrations (NSV) have been observed in an experimental three-stage high-speed compressor at part-speed conditions. High amplitude acoustic modes, propagating around the circumference and originating in the highly loaded Stage-3 have been observed in coherence with the structural vibration mode. In order to understand the occurring phenomena, a detailed numerical study has been carried out to reproduce the mechanism. Unsteady full annulus RANS simulations of the whole setup have been performed using the solver elsA. The results revealed the development of propagating acoustic modes which are partially trapped in the annulus and are in resonance with an aerodynamic disturbance in Rotor-3. The aerodynamic disturbance is identified as an unsteady separation of the blade boundary layer in Rotor-3. The results indicate that the frequency and phase of the separation adapt to match those of the acoustic wave, and are therefore governed by acoustic propagation conditions. Furthermore, the simulations clearly show the modulation of the propagating wave with the rotor blades, leading to a change of circumferential wave numbers while passing the blade row. To analyze if the effect is self-induced by the blade vibration, a noncoherent structural mode has been imposed in the simulations. Even at high vibration amplitude the formerly observed acoustic mode did not change its circumferential wave number. This phenomenon is highly relevant to modern compressor designs, since the appearance of the axially propagating acoustic waves can excite blade vibrations if they coincide with a structural eigenmode, as observed in the presented experiments.


Author(s):  
Hugh Goyder

Acoustic waves in pipelines are of concern because they can cause failure due to structural vibration and fatigue. The maximum wave amplitude that can be generated is limited by damping; a good understanding of damping is therefore vital. The damping considered here is due to the loss of energy from a resonant mode at a reflecting boundary. This type of damping is straightforward to analysis and consequently simple equations for damping are developed. A further aspect of damping is that it considerably modifies the description of acoustic resonance. The use of damped acoustic modes is shown to be problematic because they are complex and do not satisfy orthogonally conditions. A further and more significant observation is that damping prevents modes from being uncoupled and considered as independent. An uncoupled configuration is always found in undamped modes and is useful in forming simplified models however such uncoupling does not, in general, extend to damped modes. A condition for determining if modes can be uncoupled is derived. If a damped mode, which is not uncoupled, is used in an acoustic model it can generate energy as well as absorb energy. This non-physical behaviour greatly complicates the analysis of acoustic systems with damping.


2019 ◽  
Vol 77 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Kalai Selvan Arumugham

Alternative assessment plays an important role in gathering information about students’ learning. Introduction of new curriculum in Malaysian primary school education namely Standard Curriculum of Primary School has highlighted portfolio as an assessment tool. Therefore, research has been conducted to examine teachers’ understanding towards this new alternative assessment method. The qualitative data used in this research were gathered from three interview sessions and classroom observations. Five primary school teachers were selected as participants of this research. They are teaching core subject such as English, Mathematics and Science. Thematic analysis was conducted to examine the themes emerged to represent their understandings towards portfolio. Teachers’ understandings towards portfolio were grouped into three major themes: As students’ work collections, as feedback and improvement tools and as teaching, learning and grading tools. They used portfolio in classroom as they understood. Different understandings were revealed as these teachers are also teaching different subjects. This may be the reason why these teachers were having different understandings towards portfolio assessments. This research is significant to teachers, stakeholders, school administration and even society about portfolio assessment.


Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


2002 ◽  
Vol 29 (1) ◽  
pp. 66-71 ◽  
Author(s):  
S. L. Rideout ◽  
T. B. Brenneman ◽  
K. L. Stevenson

Abstract Southern stem rot (caused by the soilborne fungus Sclerotium rolfsii Sacc.) of peanut (Arachis hypogaea L.) traditionally has been assessed based on the percentage of infected 30.5-cm row segments, commonly referred to as disease incidence. Several alternative disease assessment methods were evaluated in four fungicide trials during the growing season (aboveground ratings) and immediately after peanut inversion (belowground ratings). Pearson's correlation coefficients compared disease assessments and yields for all trials. Across all disease assessment methods, belowground assessments at inversion showed a stronger correlation with yield than in-season aboveground assessments. Several of the alternative assessment methods showed a stronger negative correlation with yield than did the traditional disease incidence rating. However, none of the alternative methods were consistently more precise across all assessment dates and trials. There was a significant positive correlation between many of the alternative methods and the traditional disease incidence method. Furthermore, none of the alternative methods was better than the traditional method for detecting differences among fungicide treatments when subjected to ANOVA and subsequent Waller-Duncan mean separation tests (k-ratio = 100). Based on comparisons of the time required to assess disease intensity, the traditional disease assessment method was found to be the most time efficient method of those tested in this study.


2017 ◽  
Vol 49 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Mikołaj Piniewski ◽  
Mateusz Szcześniak ◽  
Shaochun Huang ◽  
Zbigniew W. Kundzewicz

Abstract The objective of this paper is to assess climate change impacts on spatiotemporal changes in annual and seasonal runoff and its components in the basins of two large European rivers, the Vistula and the Odra, for future horizons. This study makes use of the Soil and Water Assessment Tool (SWAT) model, set up at high resolution, and driven by a multi-model ensemble (MME) of nine bias-corrected EURO-CORDEX simulations under two representative concentration pathways (RCPs), 4.5 and 8.5. This paper presents a wealth of illustrative material referring to the annual and seasonal runoff (R) in the reference period as well as projections for the future (MME mean change), with explicit illustration of the multi-model spread based on the agreement between models and statistical significance of change according to each model. Annual R increases are dominating, regardless of RCP and future horizon. The magnitude of the MME mean of spatially averaged increase varies between 15.8% (RCP 4.5, near future) and 41.6% (RCP 8.5, far future). The seasonal patterns show the highest increase in winter and the lowest in spring, whereas the spatial patterns show the highest increase in the inner, lowland part, and the lowest in the southern mountainous part of the basin.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


2007 ◽  
Vol 561-565 ◽  
pp. 2253-2256 ◽  
Author(s):  
You Tang Li ◽  
Ping Ma ◽  
Jun Tian Zhao

Product lifecycle management is one of the main developmental aspects of advanced manufacturing technology. Anti-fatigue design is the key content in product lifecycle management. For designing the fatigue life of shaft exactly and determining the assessment method, the influencing factors must be realized roundly. The mechanical model of shaft is set up at first, and then the main factors that affect the fatigue life of shaft is discussed, the interrelations of the main factors and the framework are founded. The assessment equation of fatigue life for shaft is put forward and the influencing coefficient of multi-axial stress to fatigue life is analyzed. The results of this paper will establish the base of anti-fatigue and assessment life of shaft.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2077
Author(s):  
Oliver Zeman ◽  
Michael Schwenn ◽  
Martin Granig ◽  
Konrad Bergmeister

The assessment of already installed anchorages for a possible exceeding of the service load level is a question that is gaining more and more importance, especially in building maintenance. Bonded anchors are of particular interest here, as the detection of a capacity reduction or load exceedance can cause damage to the concrete-bonded mortar behavior. This article investigates the extent to which ultrasonic methods can be used to make a prediction about the condition of anchorages in concrete and about their load history. A promising innovative assessment method has been developed. The challenges in carrying out the experimental investigations are the arrangement of the transducers, the design of the test set-up and the applicability of direct, indirect or semidirect ultrasonic transmission. The experimental investigations carried out on a test concrete mix and a bonded anchor system show that damage to the concrete structure can be detected by means of ultrasound. The results indicate the formation of cracks and therefore a weakening of the response determined by means of direct, indirect and semidirect ultrasonic transmission. However, for application under non-laboratory conditions and on anchors with unknown load history, the calibration with a reference anchor and the identification of the maximum load is required. This enables a referencing of the other loaded anchors to the unloaded conditions and allows an estimation of the load history of individual anchors.


1954 ◽  
Vol 5 (4) ◽  
pp. 218-234 ◽  
Author(s):  
J. H. Preston

SummaryA simple method is developed for computing the trailing vorticity which arises when a non-uniform stream is turned.It is shown that, for a sudden and constant deflection of a non-uniform stream, no net trailing vorticity is set up in the exit flow and hence there is no secondary motion.In the case of an impulse cascade of finite dimensions with constant turning, it is found that the trailing vorticity has three distinct components—the passage vorticity and two components which appear as vortex sheets springing from the trailing edges of the aerofoils. It is shown that for small angles of deflection there is no net circulation associated with the trailing vorticity downstream, of the cascade, and it is inferred that this should still be so for large deflections.


Sign in / Sign up

Export Citation Format

Share Document