A Simple Approach to the Theory of Secondary Flows

1954 ◽  
Vol 5 (4) ◽  
pp. 218-234 ◽  
Author(s):  
J. H. Preston

SummaryA simple method is developed for computing the trailing vorticity which arises when a non-uniform stream is turned.It is shown that, for a sudden and constant deflection of a non-uniform stream, no net trailing vorticity is set up in the exit flow and hence there is no secondary motion.In the case of an impulse cascade of finite dimensions with constant turning, it is found that the trailing vorticity has three distinct components—the passage vorticity and two components which appear as vortex sheets springing from the trailing edges of the aerofoils. It is shown that for small angles of deflection there is no net circulation associated with the trailing vorticity downstream, of the cascade, and it is inferred that this should still be so for large deflections.

Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


2019 ◽  
Vol 20 (1) ◽  
pp. 1-14
Author(s):  
Helder José ◽  
Iasmin Macedo ◽  
Mateus Cruz Loss

The suspended pitfall demonstrates a new and simple mechanism to capture small arboreal and scansorial mammals. It is an arboreal version of the pitfalls traditionally used to capture terrestrial amphibians and reptiles. Buckets with bait inside are raised by a rope until they reach a tree branch at the desired height. Tests were performed in the Atlantic Forest at three different sites at the mouth of Doce River in Linhares, southeastern Brazil. In one of them suspended pitfalls were set up in the understory of a shaded cacao plantation (cabruca agroforest) in the branches of cacao trees between 2 and 3 m in height, and in the other they were placed in a native forest between 5 to 15 m in height. At the third site, suspended pitfalls were tested together with the other live traps used hitherto in the understory of other cabruca agroforest. The marsupials Didelphis aurita, Caluromys philander, Marmosa (Micoureus) paraguayana, Gracilinanus microtarsus, Marmosa murina and the rodent Rhipidomys mastacalis were captured by suspended pitfall. This live trap was capable of catching all sizes of small arboreal mammals, including juvenile individuals. This method proved to be functional for the capture of some small arboreal mammals and may be a complementary alternative for sampling in high forest strata.


Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a Ring-like wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions — namely, one with and one without this Ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back-flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


1990 ◽  
Vol 112 (4) ◽  
pp. 1063-1069 ◽  
Author(s):  
M. Choi ◽  
Y. T. Lin ◽  
R. Greif

The secondary flows resulting from buoyancy effects in respect to the MCVD process have been studied in a rotating horizontal tube using a perturbation analysis. The three-dimensional secondary flow fields have been determined at several axial locations in a tube whose temperature varies in both the axial and circumferential directions for different rotational speeds. For small rotational speeds, buoyancy and axial convection are dominant and the secondary flow patterns are different in the regions near and far from the torch. For moderate rotational speeds, the effects of buoyancy, axial and angular convection are all important in the region far from the torch where there is a spiraling secondary flow. For large rotational speeds, only buoyancy and angular convection effects are important and no spiraling secondary motion occurs far downstream. Compared with thermophoresis, the important role of buoyancy in determining particle trajectories in MCVD is presented. As the rotational speed increases, the importance of the secondary flow decreases and the thermophoretic contribution becomes more important. It is noted that thermophoresis is considered to be the main cause of particle deposition in the MCVD process.


2007 ◽  
Vol 31 ◽  
pp. 117-119
Author(s):  
Li Gao ◽  
Qing Feng Yan ◽  
C.C. Wong ◽  
Yet Ming Chiang

Convective self-assembly of colloidal spheres provides a simple method for fabricating two and three dimensional colloidal crystals. In this work, we investigated the layer transitions phenomena during colloidal self-assembly in a sessile drop by using an in-situ videoscopic set-up. The effects of surface charge, colloidal concentration, and surfactant additions were examined. The results show that the chemical environment plays an important role in colloidal self-assembly. In the case of ordered growth, different layer transition phenomena were observed when the colloidal concentration is different.


1986 ◽  
Author(s):  
M. Govardhan ◽  
N. Venkatrayulu ◽  
D. Prithvi Raj

The paper presents the results of three dimensional flow measurements behind the trailing edges of an impulse turbine blade row of 120° deflection in an annular cascade. The entry boundary layer thickness was systematically varied on the hub and casing walls separately and its effect on secondary flows and losses is investigated. With the increase of entry boundary layer thickness, it has been found that (i) the contours of local loss coefficient show that the magnitude of the hub loss core increased, (ii) the loss cores near the hub and casing wall are convected away from the walls, (iii) the spanwise variation of the pitchwise averaged losses indicate that the position of large loss peak near the hub wall remains the same, but the magnitude of the loss increases, (iv) the exit static pressure increases and the exit velocity in general decreases, (v) the degree of underturning of flow increases and (vi) the net secondary losses do not change appreciably.


Author(s):  
Amir Taheri ◽  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Alexandre Lavrov ◽  
...  

Abstract In this study, a new approach for detailed tracking of the interface between well fluid and cement by using particles is investigated. This can improve the quality of annular cementing of CO2 wells and thus the storage safety. For this purpose, the displacement mechanisms of Newtonian and non-Newtonian fluids in the annulus of vertical and inclined wells is investigated by using an experimental set-up with an eccentric annular geometry and by finite element analysis of an equivalent model with COMSOL Multiphysics solver. For more efficient displacement, the displacing fluid has a higher density than the displaced fluid, and the intermediate-buoyancy particles that reside at the interface between successive fluids are introduced into the models. Such particles must overcome strong secondary flows in order to travel with the interface. Particle motions are investigated in different experimental and numerical models, and their effectiveness is investigated. The experimental results confirm that while the particles with a size of 425–500 um are unable to overcome the secondary flows in eccentric vertical models and track the interface, they can be useful for tracking the interface between two fluids in an eccentric model with a small inclination to the narrow side. CFD analysis investigates this behavior with more details and shows the effects of some parameters on the particle motions.


2019 ◽  
Vol 196 ◽  
pp. 00028 ◽  
Author(s):  
Egor Palkin ◽  
Maxim Shestakov ◽  
Rustam Mullyadzhanov

We report on Large-eddy simulations (LES) of flow around a short cylinder mounted in a narrow plane channel in a range of Reynolds numbers 1000, 2000, 3750 based on the bulk velocity of the flow and diameter of the cylinder supplemented with Particle image velocimetry (PIV) measurements for the highest considered Re. First two cases appear to be steady, however, for Re=3750 the flow becomes unsteady with the wake dominated by periodic vortex shedding. In front of the cylinder typical horseshoe vortices are identified intensifying the skin friction and heat transfer on the wall, while in the near wake we observe a quasiperiodic low-frequency secondary motion in the form of a pair of counterrotating eddies developing in the transverse direction. The Karman vortex street remains the dominant pattern, but further downstream from the cylinder the transport across the channel is associated with the secondary streamwise vortices, as also previously observed in slot jets. We observe their impact on heat transfer and skin friction on the wall of the channel.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1113 ◽  
Author(s):  
Bogumiła Kumanek ◽  
Tomasz Wasiak ◽  
Grzegorz Stando ◽  
Paweł Stando ◽  
Dariusz Łukowiec ◽  
...  

Despite the widespread use of sonication for individualization of nanomaterials, its destructive nature is rarely acknowledged. In this study, we demonstrated how exposure of the material to a hostile sound wave environment can be limited by the application of another preprocessing step. Single-walled carbon nanotubes (CNTs) were initially ground in a household coffee grinder, which enabled facile deagglomeration thereof. Such a simple approach enabled us to obtain high-quality CNT dispersion at reduced sonication time. Most importantly, electrical conductivity of free-standing films prepared from these dispersion was improved almost fourfold as compared with unground material eventually reaching 1067 ± 34 S/cm. This work presents a new approach as to how electrical properties of nanocarbon ensembles may be enhanced without the application of doping agents, the presence of which is often ephemeral.


Sign in / Sign up

Export Citation Format

Share Document