Korean Regulatory Experience on PWSCC in Korean NPP

Author(s):  
Kyung-Cho Kim ◽  
Sung-bu Choi ◽  
Koo-Kab Chung ◽  
Hae-Dong Chung

The degradation of alloy 600 and its weld material (alloy 82/182) has been reported in many nuclear power plants. In Korea, the crack induced by PWSCC was discovered in the drain nozzle of Yongkwang units 3 & 4 in 2006∼2008 and SG plug weld of Yongkwang unit 3 in 2007. In July 2007, during visual inspections of SG tube plugs at Yonggwang unit 4, boric acid deposits were observed around five Alloy 600 welded plugs. The root cause of the cracking in alloy 600 plugs was revealed to be due to the fact that the cracks were mainly caused by residual stress induced from the welding, expanding and tight-fitting. Younggwang unit 3 found the white small deposits on the drain nozzle on the 10th RFO in 2007. The root cause of the cracking in drain nozzle was revealed to be due to the initiation of a crack on the inside surface of drain nozzle and propagated to through wall cracks in the axial and circumferential direction. Younggwang unit 3 found the white widespread deposits on the upper head of a reactor vessel on the 12th RFO in 2010. Utility is trying to reveal the root cause of the cracking in the vent line of the reactor head according the KINS requirement. In this article, Korean regulatory experiences for PWSCC are introduced. After these PWSCC experiences, all SG tubes welded by Alloy 600 were replaced and all SG drain and instrumentation nozzles with Alloy 600 have been replaced into Alloy 690 material.

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
D. Rudland ◽  
A. Csontos ◽  
T. Zhang ◽  
G. Wilkowski

At the end of 2006, defects were identified using ultrasonic testing in three of the pressurizer nozzle dissimilar metal (DM) welds at the Wolf Creek nuclear power plant. Understanding welding residual stress is important in the evaluation of why and how these defects occur, which in turn helps to determine the reliability of nuclear power plants. This paper presents analytical predictions of welding residual stress in the surge nozzle geometry identified at Wolf Creek. The analysis procedure in this paper includes not only the pass-by-pass welding steps, but also other essential fabrication steps of pressurizer surge nozzles. Detailed welding simulation analyses have been conducted to predict the magnitude of these stresses in the weld material. Case studies were carried out to investigate the change in the DM main weld stress fields resulting from different boundary conditions, material strength, weld sequencing, as well as simulation of the remaining piping system stiffness. A direct comparison of these analysis methodologies and results has been made in this paper. Weld residual stress results are compared directly to those calculated by the nuclear industry.


2018 ◽  
pp. 3-10
Author(s):  
Yu. Kovbasenko ◽  
Yevgen Bilodid

The article investigates the possibility of a self-sustaining chain nuclear fission reaction during the development of a severe accident in the core at nuclear power plants with reactors WWER-1000 of Ukraine. Some models for calculating a criticality at different stages of the severe accident in the reactor VVER-1000 vessel were developed and calculations of multiplication properties of fuel containing masses were performed. The severe accident in the VVER-1000 core approximately divided into seven major stages: the intact reactor core, beginning of cladding damage (swelling), cladding melting and flowing down to the support grid, melting of constructional materials, homogenization of the materials at the bottom of the reactor vessel, stratification of corium at the bottom of the reactor vessel, the exit of the corium from the reactor shaft. It was shown that at the beginning of an accident, if fuel rods geometry is maintained, criticality might appear even if the emergency protection rods is triggered. With further development of the accident, the melt of fuel and structural materials will be deeply subcritical if water cannot penetrate into the pores or voids of the melt. In the case of the formation of pores or voids in the melt and the ingress of water into them, a recriticality may arise. A compensating measure is the addition of a boric acid solution to a cooling water with a certain concentration. According to the results of the computation analysis, a reactor core loaded with TVSA fuel (Russian production) requires a higher concentration of boric acid in water to compensate the multiplication properties of the fuel system in emergency situations compared to the core loaded with TVS-WR fuel (manufactured by Westinghouse), i.e. TVS-WR fuel is safer from the criticality point of view.


Author(s):  
D. Rudland ◽  
T. Zhang ◽  
G. Wilkowski ◽  
A. Csontos

During the last year, defects had been located by ultrasonic testing in three of the pressurizer nozzle dissimilar metal (DM) welds at the Wolf Creek nuclear power plant. Understanding welding residual stress is important in the evaluation of why and how these defects occur, which in turn helps to determine the reliability of nuclear power plants. The analysis procedure in this paper included not only the pass-by-pass welding steps, but also other essential fabrication steps of pressurizer surge nozzles. Detailed welding simulation analyses have been conducted to predict the magnitude of these stresses in the weld material. Case studies were carried out to investigate the influences to main weld stress fields with different boundary conditions, material strength, weld sequencing, as well as simulation of the remaining piping system stiffness. A direct comparison of these analysis methodologies and results has been made in this paper. Weld residual stress results from nuclear industry (conducted by Dominion Engineering, Inc.) and the US NRC (conducted by Engineering Mechanics Corporation) are also compared.


Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


2013 ◽  
Vol 10 (2) ◽  
pp. 6-10 ◽  
Author(s):  
Petr Pospíšil

Abstract Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive waterjet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Mechanical cutting has been used by Westinghouse since 1999 for both Pressurized Water Reactors (PWR’s) and Boiling Water Reactors (BWR’s) and its process has been continuously improved over the years. The complexity of the work requires well designed and reliable tools. Different band saws, disc saws, tube cutters and shearing tools have been developed to cut the reactor internals. All of those equipments are hydraulically driven which is very suitable for submerged applications. Westinghouse experience in mechanical cutting has demonstrated that it is an excellent technique for segmentation of internals. In summary, the purpose of this paper will be to provide an overview of the Westinghouse mechanical segmentation process, based on actual experience from the work that has been completed to date.


Author(s):  
Sang-Nyung Kim ◽  
Sang-Gyu Lim

The safety injection (SI) nozzle of a 1000MWe-class Korean standard nuclear power plant (KSNP) is fitted with thermal sleeves (T/S) to alleviate thermal fatigue. Thermal sleeves in KSNP #3 & #4 in Yeonggwang (YG) & Ulchin (UC) are manufactured out of In-600 and fitted solidly without any problem, whereas KSNP #5 & #6 in the same nuclear power plants, also fitted with thermal sleeves made of In-690 for increased corrosion resistance, experienced a loosening of thermal sleeves in all reactors except KSNP YG #5-1A, resulting in significant loss of generation availability. An investigation into the cause of the loosening of the thermal sleeves only found out that the thermal sleeves were subject to severe vibration and rotation, failing to uncover the root cause and mechanism of the loosening. In an effort to identify the root cause of T/S loosening, three suspected causes were analyzed: (1) the impact force of flow on the T/S when the safety SI nozzle was in operation, (2) the differences between In-600 and In-690 in terms of physical and chemical properties (notably the thermal expansion coefficient), and (3) the positioning error after explosive expansion of the T/S as well as the asymmetric expansion of T/S. It was confirmed that none of the three suspected causes could be considered as the root cause. However, after reviewing design changes applied to the Palo Verde nuclear plant predating KSNP YG #3 & #4 to KSNP #5 & #6, it was realized that the second design modification (in terms of groove depth & material) had required an additional explosive energy by 150% in aggregate, but the amount of gunpowder and the explosive expansion method were the same as before, resulting in insufficient explosive force that led to poor thermal sleeve expansion. T/S measurement data and rubbing copies also support this conclusion. In addition, it is our judgment that the acceptance criteria applicable to T/S fitting was not strict enough, failing to single out thermal sleeves that were not expanded sufficiently. Furthermore, the T/S loosening was also attributable to lenient quality control before and after fitting the T/S that resulted in significant uncertainty. Lastly, in a flow-induced vibration test planned to account for the flow mechanism that had a direct impact upon the loosening of the thermal sleeves that were not fitted completely, it was discovered that the T/S loosening was attributable to RCS main flow. In addition, it was proven theoretically that the rotation of the T/S was induced by vibration.


Author(s):  
J.-S. Park ◽  
J.-M. Kim ◽  
G.-H. Sohn ◽  
Y.-H. Kim

This study is concerned with the mechanics analysis of residual stress improvement by the heat sink method applied to a dissimilar metal weld (DMW) for the use in nuclear power plants. The DMW joint considered here is composed of ferritic low-alloy steel nozzle, austenitic stainless steel safe-end, and nickel-base alloy A52 weld metal. To prepare the DMW joint with a narrow-gap, the gas tungsten arc welding (GTAW) process is utilized, and the heat sink method is employed to control thermal gradients developed in the critical region of work pieces during welding. Weld residual stresses are computed by the non-linear thermal elasto-plastic analysis using the axisymmetric finite element (FE) model, for which temperature-dependent thermal and mechanical properties of the materials are considered. A full-scale mock-up test is conducted to validate analytical solution for the DMW joint, and residual stresses are measured by using the hole-drilling method. Results of the FE modeling and mock-up test for the DMW joint are compared and effects of the heat sink method are discussed. It is found that a significant amount of residual compressive stresses can be developed on the inner surface of the DMW joint by using the heat sink method, which can effectively reduce the susceptibility of the welded materials to stress corrosion or fatigue cracking.


Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


Sign in / Sign up

Export Citation Format

Share Document