Effect of Ageing on Residual Stresses in Welded Stainless Steel Cylinders

Author(s):  
Son Do ◽  
David Smith ◽  
Mike Smith

Operation of components at high temperature in power stations leads to the relaxation of residual stresses created in welded stainless steel cylinders. In this work a number of Esshete 1250 stainless steel cylinders containing girth welds and repair welds were manufactured. Two cylinders were then put to a furnace for 10,000hrs and 20,000hrs at 650°C. These conditions simulated the effects of aging. The residual stresses in the girth welds and repair welds before and after aging were measured using a number of methods based around the Deep Hole Drilling method. This paper describes the experiments carried out to obtain the through-wall distribution of stresses. It is evident that there was significant relaxation of the residual stresses due to aging. The peak tensile residual stress in girth welds was relaxed from 500MPa to 110MPa and the peak compressive residual stress in girth welds was relaxed from −301MPa to −135MPa after 10,000 hours at 650°C. The repair weld residual stresses were not only relaxed at the peak stresses but relaxed average levels from 220MPa to 140MPa for hoop stresses and from 180MPa to 145MPa for axial stresses. The implications of these findings are discussed in the context of future fracture tests.

2005 ◽  
Vol 490-491 ◽  
pp. 102-106 ◽  
Author(s):  
De Lin Rao ◽  
Zheng Qiang Zhu ◽  
Li Gong Chen ◽  
Chunzhen Ni

The existence of residual stresses caused by the welding process is an important reason of cracking and distortion in welded metal structures that may affect the fatigue life and dimensional stability significantly. Heat treatment is one of the traditional methods to relieve the residual stresses. But it is often limited by the manufacturing condition and the size of the structures. In this paper a procedure called vibratory stress relief (VSR) is discussed. VSR is a process to reduce and re-distribute the internal residual stresses of welded structures by means of post-weld mechanical vibration. The effectiveness of VSR on the residual stresses of welded structures, including the drums of hoist machine and thick stainless steel plate are investigated. Parameters of VSR procedure are described in the paper. Residual stresses on weld bead are measured before and after VSR treatment by hole-drilling method and about 30%~50% reduction of residual stresses are observed. The results show that VSR process can reduce the residual stress both middle carbon steel (Q345) and stainless steel (304L) welded structures effectively.


2012 ◽  
Vol 726 ◽  
pp. 125-132 ◽  
Author(s):  
Aleksander Karolczuk ◽  
Krzysztof Kluger ◽  
Mateusz Kowalski ◽  
Fabian Żok ◽  
Grzegorz Robak

The main aim of the paper is determination of residual stresses in explosively welded steel-titanium bimetal. The analysis considers two bimetallic specimens: before and after the heat treatment. In residual stress determination the hole drilling method along with finite element analysis were applied. The results show different residual stress states depending on the heat treatment. The obtained results are confirmed by thermal stress calculation.


Author(s):  
R. J. Coulthard ◽  
M. Mostafavi ◽  
C. E. Truman

Abstract Residual stresses within welded components can redistribute when exposed to high temperatures and large levels of loading. The ageing process for a specimen attempts to replicate the temperature regime experienced during typical service use of the component, redistributing stresses from the as-welded condition to post-ageing. The aim of this investigation was to study the effects of ageing on weld residual stress redistribution and to evaluate the changes in the residual stress profiles before and after the pipe had been aged. In this investigation the through thickness residual stresses within a narrow gap girth TIG welded stainless steel 316L pipe were measured. The ageing of the pipe specimen involved heating to 400°C for 3000 hours. To measure residual stress the incremental Deep-Hole Drilling (iDHD) method was employed; two measurements were taken, once before and after ageing. Analysis of the measured pre and post-ageing residual stresses showed a consistent reduction in the magnitude of approximately 50 MPa, corresponding to the change in the yield stress of the material at room and elevated (400°C) temperatures; the maximum residual stress, of 450 MPa, was measured at 4 mm from the external surface of the pipe.


2013 ◽  
Vol 770 ◽  
pp. 159-163
Author(s):  
Dian Ye Cao ◽  
Yin Fei Yang ◽  
Zhi Wu Liu ◽  
Jie Yu ◽  
Liang Li

In order to study the residual stress distribution of the casing part in aeroengine, the hole-drilling method was used to measure the residual stress before and after the annealing treatment. The measurement results indicated that the annealing treatment significantly improved the residual stress distribution in the part, and the residual stresses were showed as compressive stress. Meanwhile, the measured residual stress distribution would provide the basis for controlling the machining distortion of the casing part in aeroengine.


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hamid Jahed ◽  
Mohammad Reza Faritus ◽  
Zeinab Jahed

Relieved strains due to drilling hole in a ring sample cut from an autofrettage cylinder are measured. Measured strains are then transformed to residual stresses using calibration constants and mathematical relations of elasticity based on ASTM standard recommendations (American Society for Testing and Materials, ASTM E 837-08, 2008, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” American Society for Testing and Materials). The hydraulic autofrettage is pressurizing a closed-end long cylinder beyond its elastic limits and subsequently removing the pressure. In contrast to three-dimensional stress state in the autofrettage tube, the stress measurement in hole drilling method is performed on a traction free surface formed from cutting the ring sample. The process of cutting the ring sample from a long autofrettaged tube is simulated using finite element method (FEM) and the redistribution of the residual stress due to the cut is discussed. Hence, transformation of the hole drilling measurements on the ring slice to the autofrettage residual stresses is revealed. The residual stresses are also predicted by variable material properties (VMP) method (Jahed, H., and Dubey, R. N., 1997, “An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field,” Trans. ASME J. Pressure Vessel Technol., 119, pp. 264–273) using real loading and unloading behavior of the test material. Prediction results for residual hoop stress agree very well with the measurements. However, radial stress predictions are less than measured values particularly in the middle of the ring. To remove the discrepancy in radial residual stresses, the measured residual hoop stress that shows a self-balanced distribution was taken as the basis for calculating residual radial stresses using field equations of elasticity. The obtained residual stresses were improved a lot and were in good agreement with the VMP solution.


2018 ◽  
Vol 53 (5) ◽  
pp. 364-375
Author(s):  
Florian Vollert ◽  
Marco Lüchinger ◽  
Simone Schuster ◽  
Nicola Simon ◽  
Jens Gibmeier ◽  
...  

Lightweight constructions are used to fulfil the ever-increasing demands regarding fuel efficiency and carbon dioxide emission in transportation industries. In order to reduce weight, technical components made of solid materials are often replaced by tubular structures. Under service conditions, the components are frequently exposed to cyclic loads. Hence, residual stresses that are induced by manufacturing processes can have a significant impact on service life. In this work, the focus is on tube manufacturing processes, precisely cold tube sinking and fixed plug drawing. Both processes induce characteristic residual stress states, which are important to assess the mechanical integrity and load-carrying capacity of tubular components during service. The aim of this article is to examine the residual stress depth distribution for medium-carbon steel tubes manufactured by cold tube sinking and fixed plug drawing. The residual stresses are measured by means of the Sachs method and the hole-drilling method, respectively. The measured results are compared to finite element simulations of the tube drawing process. It is shown that the residual stress obtained with the different experimental methods and the numerical simulations are consistent. Furthermore, it is shown that the residual stresses can be significantly reduced when a plug is used in the drawing process.


2006 ◽  
Vol 3-4 ◽  
pp. 125-130 ◽  
Author(s):  
Khaled Y. Benyounis ◽  
Abdul Ghani Olabi ◽  
M.S.J. Hashmi

Residual stresses are an integral part of the total stress acting on any component in service. It is important to determine and/or predict the magnitude, nature and direction of the residual stress to estimate the life of important engineering parts, particularly welded components. This work aims to introduce experimental models to predict residual stresses in the heat-affected zone (HAZ). These models specify the effect of laser welding input parameters on maximum residual stress and its direction. The process input variables considered in this study are laser power (1.03 - 1.368 kW), travel speed (26.48 – 68.52 cm/min) and focal point position (- 1 to 0 mm). Laser butt-welding of 304 stainless steel plates of 3 mm thick were investigated using a 1.5 kW CW CO2 Rofin laser as a welding source. Hole-drilling method was employed to measure the magnitude, and direction of the maximum principal stress in and around the HAZ, using a CEA-06- 062UM-120 strain gauge rosette, which allows measurement of the residual stresses close to the weld bead. The experiment was designed based on Response Surface Methodology (RSM). Fifteen different welding conditions plus 5 repeat tests were carried out based on the design matrix. Maximum principal residual stresses and their directions were calculated for the twenty samples. The stepwise regression method was selected using Design-expert software to fit the experimental responses to a second order polynomial. Sequential F test and other adequacy measures were then used to check the models adequacy. The experimental results indicate that the proposed mathematical models could adequately describe the residual stress within the limits of the factors being studied. Using the models developed, the main and interaction effect of the process input variables on the two responses were determined quantitatively and presented graphically. It is observed that the travel speed and laser power are the main factors affecting the behavior of the residual stress. It is recommended to use the models to find the optimal combination of welding conditions that lead to minimum distortion.


2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


Holzforschung ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Jeroen van Houts ◽  
Debes Bhattacharyya ◽  
Krishnan Jayaraman

Summary Due to the moisture and temperature gradients developed during hot pressing of medium density fibre-board (MDF), residual stresses occur within the board as it equilibrates to room conditions. It would be extremely useful to measure these residual stresses and to determine their effects on board properties such as moduli of elasticity and rupture in bending, internal bond strength and dimensional stability. In this article two methods, namely dissection and hole drilling, have been adapted to measure residual internal stress distributions in six different samples of industry produced MDF. The dissection method involves cutting several pieces of MDF perpendicular to the thickness direction at different depths. The residual stresses released by the dissection can be determined by measuring the curvatures of cut pieces and knowing their elastic moduli. The hole drilling method, on the other hand, involves mounting three strain gauges on the surface of a piece of MDF and drilling a hole to release residual stresses in close proximity. The released stresses are manifested as strains in the forms of which can be measured in three directions on the surface of the board. A theoretical model for predicting residual stresses involving various parameters has been developed and an excellent agreement with the experimental results from both the dissection and hole drilling methods has been achieved. Linear moisture expansion coefficient appears to have the greatest influence on residual stress. When compared against each other, the residual stresses measured by the hole drilling method show some shortcomings towards the centre of the board. While all six of the MDF boards exhibited similar trends in their residual stress distributions, significant differences were identified in the magnitudes of residual stress measured. Finally, some preliminary results linking the residual stress with the thickness swell of the samples and their surface densities have been presented.


Sign in / Sign up

Export Citation Format

Share Document