ASME Sec VIII Div 3 Fatigue Life Predictions Using Critical Plane Approach

Author(s):  
Kumarswamy Karpanan ◽  
William Thomas

ASME VIII Div 3 fatigue evaluation is based on the theory that cracks tend to nucleate along the slip lines oriented in the maximum shear stress planes. This code provides methods to calculate the fatigue stresses when the principal stress direction does not change (proportional loading) and axes change (nonproportional loading). When principal stress direction does not change within a fatigue cycle, shear stress amplitude is calculated only on the three maximum shear stress planes. But when the principal stress directions do change within a loading cycle, the plane carrying the maximum shear stress amplitude (also known as critical plane) cannot be easily identified and all planes at a point needs to be searched for the maximum shear stress amplitude. This paper describes the development of an ANSYS-APDL macro to predict the critical plane at each surface node of an FE model using the FEA stress results. This macro searches through 325 planes (at 10° increments along two angles) at each surface node and for each load step to identify the maximum shear stress and the corresponding normal stress for each surface node. The fatigue life is calculated for each surface node and is plotted as a color contour on the FEA model. This macro can be extended to calculate the fatigue life using other critical plane approaches such as the Findley and Brown-Miller models.

2016 ◽  
Vol 713 ◽  
pp. 334-337
Author(s):  
Tian Qing Liu ◽  
Xin Hong Shi ◽  
Jian Yu Zhang

Fatigue tests have been carried out to investigate the effects of mean-stress and phase-difference on the tension-torsion fatigue failure of 2A12-T4 aluminum alloy. The results show that for fully reversed tension-torsion loading, the fatigue life increases with the increase of phase angle, but the fatigue life decreases with the increase of phase angle, when mean-stress exists, both for shear mean-stress and normal mean-stress. Fracture appearance shows that the crack initiation is on the direction of maximum shear stress amplitude plane. Critical plane criteria based on the linear combination of the maximum shear stress amplitude and maximum normal stress are studied and further discussion on the drawbacks of this kind of criteria are performed.


Author(s):  
Kumarswamy Karpanan

For complex cyclic loadings, stress- or strain-based critical plane search methods are commonly used for fatigue analysis of the structural components. Complex loadings can result in a non-proportional type loading in which it is difficult or impossible to determine the plane with maximum shear stress/strain amplitude. ASME Sec VIII, Div-3 fatigue analysis for non-welded components is a shear stress based fatigue analysis method and, for non-proportional loading, uses the critical plane search method to calculate the plane with maximum shear stress amplitude. For a two-dimensional non-proportional stress state, analytical stress transformation equations can be used to calculate the shear stress or strain amplitude on any plane at a point. The shear stress range on each plane is the difference between the maximum and minimum shear stress. For a three-dimensional stress state, shear stress amplitude calculations are much more complicated because the shear stress is a vector and both magnitude and direction change during the loading cycle. In ASME VIII-3, the maximum shear stress range among all planes, along with the normal stress on the plane, is used to calculate the stress amplitude. This paper presents a method to calculate the shear stress/strain amplitude using 3D transformation equations. This method can be used for any stress- or strain-based critical plane search method. This paper also discusses ASME proportional and non-proportional fatigue analysis methods in detail.


Author(s):  
Inge Lotsberg

For fatigue design it is necessary to provide guidelines on how to calculate fatigue damage at weld toes based on S-N data when the principal stress direction is different from that of the normal direction to the weld toe. Such stress conditions are found at details in different types of plated structures. Some different fatigue criteria for these stress conditions are presented in design standards on fatigue design. Criteria used by the International Institute of Welding (IIW), Eurocode, British Standard and in the DNV standards have been assessed against some relevant fatigue test data presented in the literature. Only proportional loading conditions have been considered here. (By proportional loading is understood that the principal stress direction is kept constant during a load cycle). An alternative equation for calculation of an equivalent or effective stress range based on stress normal to the weld toe and shear stress at the weld toe has been proposed. The proposed methodology can be used for nominal S-N curves and it can be used together with a hot spot stress S-N curve with stresses read out from finite element analysis. The different design criteria are presented in this paper together with recommendations on analysis procedure.


1994 ◽  
Vol 81 (1) ◽  
pp. 31-40 ◽  
Author(s):  
T. Dunstan ◽  
M. Jamebozorgi ◽  
S. Akbarian-Miandouab

Author(s):  
Seiji Asada

A Code Case for procedure to determine strain rate and Fen for environmental fatigue evaluation is under preparation in the ASME BPV Committee on Construction of Nuclear Facility Components (III). The draft Code Case is to incorporate two methods for strain rate calculation. One is based on NB-3216.1 “Constant Principal Stress Direction” that comes from the JSME Environmental Fatigue Evaluation Method. The other is based on NB-3216.2 “Varying Principal Stress Direction” that was proposed by M. Gray et al. In this paper, both methods are explained and compared by using a sample problem.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 180 ◽  
Author(s):  
Jialiang Wang ◽  
Dasheng Wei ◽  
Yanrong Wang ◽  
Xianghua Jiang

In this paper, the viewpoint that maximum resolved shear stress corresponding to the two slip systems in a nickel-based single crystal high-temperature fatigue experiment works together was put forward. A nickel-based single crystal fatigue life prediction model based on modified resolved shear stress amplitude was proposed. For the four groups of fatigue data, eight classical fatigue life prediction models were compared with the model proposed in this paper. Strain parameter is poor in fatigue life prediction as a damage parameter. The life prediction results of the fatigue life prediction model with stress amplitude as the damage parameter, the fatigue life prediction model with maximum resolved shear stress in 30 slip directions as the damage parameter, and the McDiarmid (McD) model, are better. The model proposed in this paper has higher life prediction accuracy.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 535
Author(s):  
Shuaiqi Liu ◽  
Fengshan Ma ◽  
Haijun Zhao ◽  
Jie Guo ◽  
Xueliang Duan ◽  
...  

Water inrush caused by hydrosplitting is an extremely common disaster in the engineering of underground tunnels. In this study, the propagation of fluid-driven fractures based on an improved discrete element fluid-solid coupling method was modeled. First, the interactions between hydrosplitting fractures (HFs) and preexisting weak planes (WPs) with different angles were simulated considering water pressure in the initial fracture. Second, the influence of the in situ stress ratio and the property of WPs were analyzed, and corresponding critical pressure values of different interactions were calculated. Lastly, the maximum principal stress and maximum shear stress variation inside the pieces were reproduced. The following conclusions can be drawn: (1) Five different types of interaction modes between HFs and natural WPs were obtained, prone to crossing the WPs under inclination of 90°. (2) The initiation pressure value decreased with an increased in situ stress ratio, and the confining stress status had an effect on the internal principal stress. (3) During HFs stretching in WPs with a high elastic modulus, the value of the maximum principal stress was low and rose slowly, and the maximum shear stress value was smaller. Through comprehensive analysis, the diversity of the principal stress curves is fundamentally determined by the interaction mode between HFs and WPs, which are influenced by the variants mentioned in the paper. The analysis provides a better guideline for understanding the failure mechanism of water gushing out of deep buried tunnel construction and cracking seepage of high head tunnels.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Chenglin Liu ◽  
Shijie He ◽  
Xiaojun Li ◽  
Bo Huo ◽  
Baohua Ji

It has been recognized that cells are able to actively sense and respond to the mechanical signals through an orchestration of many subcellular processes, such as cytoskeleton remodeling, nucleus reorientation, and polarization. However, the underlying mechanisms that regulate these behaviors are largely elusive; in particular, the quantitative understanding of these mechanical responses is lacking. In this study, combining experimental measurement and theoretical modeling, we studied the effects of rigidity and pattern geometry of substrate on collective cell behaviors. We showed that the mechanical force took pivotal roles in regulating the alignment and polarization of cells and subcellular structures. The cell, cytoskeleton, and nucleus preferred to align and polarize along the direction of maximum principal stress in cell monolayer, and the driving force is the in-plane maximum shear stress. The higher the maximum shear stress, the more the cells and their subcellular structures preferred to align and polarize along the direction of maximum principal stress. In addition, we proved that in response to the change of in-plane shear stresses, the actin cytoskeleton is more sensitive than the nucleus. This work provides important insights into the mechanisms of cellular and subcellular responses to mechanical signals. And it also suggests that the mechanical force does matter in cell behaviors, and quantitative studies through mechanical modeling are indispensable in biomedical and tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document