Structural Integrity Assessment of Notched Components Using the Master Curve Methodology and Failure Assessment Diagrams

Author(s):  
Tiberio Garcia ◽  
Sergio Cicero ◽  
Virginia Madrazo

This paper proposes a methodology for the structural integrity assessment of notched components. It combines failure assessment diagrams and a notch analysis approach based on the application of the Master Curve methodology for the prediction of the apparent fracture toughness of ferritic-pearlitic steels in notched conditions. This approach considers a new parameter named the notch reference temperature (T0N), which is different from the reference temperature (T0) obtained in cracked specimens and varies with the notch radius. With this purpose, the methodology has been applied to a set of fracture tests on steel S275JR, with notch radii ranging from 0 mm (crack-type defects) up to 2.0 mm and testing temperatures from −120°C up to 40°C. The methodology improves significantly the results obtained under the assumption that notches behave as cracks.

Author(s):  
Sergio Cicero ◽  
Virginia Madrazo ◽  
Isidro Carrascal ◽  
Miguel Laporta

This paper analyzes the notch effect and presents a methodology, based on failure assessment diagrams and the notch analysis approaches based on the theory of critical distances, for the structural integrity assessment of notched components, which allows more accurate structural analyses to be made. The methodology is applied to a set of tests performed on PMMA single edge notched bending (senb) specimens, providing better results than those obtained when the analysis is performed considering that notches behave as cracks.


Author(s):  
Ki-Sig Kang

The IAEA has sponsored a series of Coordinated Research Projects (CRPs) that have led to a focus on reactor pressure vessel (RPV) structural integrity. In the previous CRP on the application of the Master Curve (MC), three key areas were identified to need further works. These three tasks are: (1) test specimen bias, constraint, and geometry effects on the measurement and application of To values; (2) effects of loading rate up to impact loading conditions on To; and (3) potential changes in the shape of the MC for highly embrittled RPV materials. These three areas are focused on the new CRP (here below CRP-8). A new CRP is follow-on to previous successful CRPs on resolving technical issues associated with application of the MC approach. Overall objectives of CRP-8 include: 1) Better quantification of fracture toughness issues related to testing surveillance specimens for application to RPV integrity assessment, and 2) Development of approaches for addressing MC technical issues in integrity evaluation of operating RPVs. 15 organizations from 11 countries participate in the CRP and the final report will be issued in the end of 2008.


Author(s):  
L. Stefanini ◽  
F. J. Blom

In this study a probabilistic Leak-Before-Break (LBB) analysis was carried out based on the R6 FAD Option 1 assessment method. The method uses the material fracture toughness and yield stress in order to determine, deterministically, a Critical Crack Length (CCL) and a Leakage Rate (LR) through a crack. In order to define the fracture toughness of the material, the Master Curve approach was used accordingly to BS7910:2013 Annex J. Initially, deterministic analyses were carried out and the fracture toughness and yield stress were set to 190 MPa√m and 158 MPa, respectively. In order to implement a probabilistic approach, the yield stress and fracture toughness were introduced as stochastic parameter. The Fracture toughness was generated using a Weibull distribution to match the Master Curve. The distribution was built such that 190 MPa√m represents the 5% probability fracture toughness. The Yield stress (0.2% proof strength) was generated using a normal distribution with standard deviation 10.35 MPa such that the average value was 175 MPa and the lower bound (5% of probability of occurrence) was 158 MPa. The choice of building the distribution as above mentioned was justified by the fact that in structural integrity assessment the lower 5% is generally used for material parameters. Thus, once a Detectable Leakage Rate (DLR) was determined, it was possible to assign an implicit probability of failure to the deterministic case. The calculations were then extended by using several LR formulas. The calculations were carried out making use of the probabilistic software RAP++ coupled to MATLAB. The probabilities of failure were calculated with regard to a postulated DLR and a DLRSF corrected with a safety factor of 10. The probabilities of failure for the DLRSF were proved to be 9 to 15 times higher than for the postulated DLR case, which leads to the opportunity of conservatism reduction.


Author(s):  
X. Wang ◽  
R. Bell ◽  
S. B. Lambert

The loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. However, conventional failure assessment schemes (CEGB-R6, BS-7910) use lower bound toughness obtained from highly constrained test specimens. Cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on lower bound fracture toughness values overly pessimistic. Excessive pessimism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unneeded cost and inconvenience. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments including the constraint effect. In this paper, the constraint-based failure assessment of surface cracked T-plate welded joints under tension load is presented. Different issues including the constraint-based failure assessment diagrams, the treatment of combining primary and the secondary loads, and the calculation of stress intensity factors, limit loads and constraint parameters for surface cracked T-plate joints are discussed. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level increases substantially.


Author(s):  
Sergio Cicero ◽  
Tiberio Garcia ◽  
Virginia Madrazo

This paper presents the Notch-Master Curve as a model for the prediction of the apparent fracture toughness of ferritic steels in notched conditions and operating at temperatures corresponding to their ductile-to-brittle transition zone. The Notch-Master Curve combines the Master Curve of the material in cracked conditions and the notch corrections provided by the Theory of Critical Distances. In order to validate the model, the fracture resistance results obtained in fracture tests performed on notched CT and SENB specimens are presented. The results gathered here cover four ferritic steels (S275JR, S355J2, S460M and S690Q), three different notch radii (0.25 mm, 0.50 mm and 2.0 mm) and three different temperatures within the corresponding ductile-to-brittle transition zone. The results demonstrate that the Notch Master Curve provides good predictions of the fracture resistance in notched conditions for the four materials analyzed.


Author(s):  
Anssi Laukkanen ◽  
Pekka Nevasmaa ◽  
Heikki Keina¨nen ◽  
Kim Wallin

Local approach methods are to greater extent used in structural integrity evaluation, in particular with respect to initiation of an unstable cleavage crack. However, local approach methods have had a tendency to be considered as methodologies with ‘qualitative’ potential, rather than quantitative usage in realistic analyses where lengthy and in some cases ambiguous calibration of local approach parameters is not feasible. As such, studies need to be conducted to illustrate the usability of local approach methods in structural integrity analyses and improve upon the transferability of their intrinsic, material like, constitutive parameters. Improvements of this kind can be attained by constructing improved models utilizing state of the art numerical simulation methods and presenting consistent calibration methodologies for the constitutive parameters. The current study investigates the performance of a modified Beremin model by comparing integrity evaluation results of the local approach model to those attained by using the constraint corrected Master Curve methodology. Current investigation applies the Master Curve method in conjunction with the T-stress correction of the reference temperature and a modified Beremin model to an assessment of a three-dimensional pressure vessel nozzle in a spherical vessel end. The material information for the study is extracted from the ‘Euro-Curve’ ductile to brittle transition region fracture toughness round robin test program. The experimental results are used to determine the Master Curve reference temperature and calibrate local approach parameters. The values are then used to determine the cumulative failure probability of cleavage crack initiation in the model structure. The results illustrate that the Master Curve results with the constraint correction are to some extent more conservative than the results attained using local approach. The used methodologies support each other and indicate that with the applied local approach and Master Curve procedures reliable estimates of structural integrity can be attained for complex material behavior and structural geometries.


Author(s):  
Jin Ho Lee ◽  
Ji Hoon Kim ◽  
Myung Hyun Kim

Abstract Engineering critical assessment (ECA) is a procedure for evaluating the soundness of structures with flaws and has been widely applied for assessing the structural integrity. ECA procedure requires reliable fracture toughness data to assess the effect of defects. Ideal data are typically obtained from samples taken during construction of an engineering structure or from the structure afterward, but there are cases in which removal of the test samples is impossible due to the continued operation of the structure. To this end, Appendix J of the BS 7910 provides a procedure for estimating fracture toughness values from appropriate Charpy impact test data. However, the correlation between Charpy impact energy and fracture toughness is known to be overly conservative with not sufficient theoretical background in fracture mechanics perspective. In this regard, the revised BS 7910:2019 provides an improved method for calculating the reference temperature by applying the yield strength and the Charpy upper shelf energy based on empirical data. The target of this study is to validate the master curve approach in the modified BS 7910 for two common offshore grade steels with explicit considerations for various groove shapes, heat inputs and welding processes. For the purpose, the master curves are compared in terms of the reference temperature calculated from Charpy impact test according to BS 7910:2013 and the newly revised 2019 version of BS 7910. The modified master curve resulted in less conservative fracture toughness values anticipated from the decreased reference temperature. The estimated fracture toughness values exhibited a good correlation with experimentally obtained toughness values. The influence of various groove shapes, heat inputs and welding processes in estimating fracture toughness based on the master curve approach is discussed. In addition, the effect of impact test sample locations within weld metals toward estimated fracture toughness values is evaluated.


Author(s):  
Masato Yamamoto ◽  
Tomohiro Kobayashi

The load and temperature history during pressurized thermal shock (PTS) event is highly depending on the crack edge location in wall thickness direction of a reactor pressure vessel (RPV) beltline region. Therefore, the consideration of plant specific through-wall fracture toughness distribution, which is not considered in the current codes and regulations [1,2], may improve the structural integrity assessment for PTS event. The Master Curve (MC) method [3,4] is one of the methods, which can directory evaluate the fracture toughness of ferritic materials with relatively low number of any size of specimens. CRIEPI has proposed the use of very small C(T) (Mini-C(T)) specimens for the MC method. The appropriateness of Mini-C(T) technology has been demonstrated through a series of researches and round robin activities [5, 6, 7, 8, 9]. The present study evaluated the through-wall fracture toughness distribution of irradiated IAEA reference material (JRQ) by means of combination of MC method and Mini-C(T) specimens. Four thickness locations between inner surface to 1/4-T was selected. Those four layers were separately subjected to the Mini-C(T) MC evaluation in two different laboratories. Both laboratories could separately obtain valid and consistent reference temperature, To, from all the tested layers. Inner most layer exhibits 80 °C lower To compared to the 1/4-T location even though the layer has the highest fluence of 5.38 × 1019 n/cm2, while that in 1/4-T location is 2.54 × 1019 n/cm2. The results demonstrate that initial toughness distribution is dominant in the general trend of fracture toughness distribution even after the material was highly irradiated.


Author(s):  
Anthony J. Horn ◽  
Chris Aird

Structural integrity assessment codes such as R6 [1] and BS7910 [2] provide guidance on the assessment of flaws that are assumed to be infinitely sharp using the Failure Assessment Diagram (FAD). In many cases, such as fatigue cracks, this assumption is appropriate, however it can be pessimistic for flaws that do not have sharp tips such as those associated with lack of fusion, porosity or mechanical damage. Several Notch Failure Assessment Diagram (NFAD) methods have been proposed in the literature to quantify the additional margins that may be present for non-sharp defects compared to the margins that would be calculated if the defect were assumed to be a sharp crack. This paper uses mechanistic modelling to define the limits of applicability of the NFAD approach in terms of ρ/a, where ρ is the notch root radius and a is the notch depth. The work concludes that the NFAD can be used to assess notches with ρ/a values of up to unity.


Author(s):  
Jae-Il Jang ◽  
Yeol Choi ◽  
Yun-Hee Lee ◽  
Jung-Suk Lee ◽  
Dongil Kwon ◽  
...  

While most in-field technologies for structural integrity diagnosis focus on precise crack detection, the instrumented indentation technique has emerged as one of the most practically useful technologies for non-destructive and quantitative in-field measurement of mechanical properties. In a similar vein, here an advanced indentation technique for determining tensile properties and its application to structural integrity assessment are introduced and discussed. This novel indentation technique can enhance the accuracy of fitness-for-service (FFS) assessment by application to failure assessment diagram (FAD) construction.


Sign in / Sign up

Export Citation Format

Share Document