Oxidation Inhibited Graphite: What Is It?

Author(s):  
Benjamin F. Hantz

When exposed to air at elevated temperatures, graphite oxidizes by a reaction between carbon and oxygen forming carbon monoxide and carbon dioxide. Using graphite as a sealing material and exposing it to the aforementioned environment, the reaction consumes graphite which degrades the sealing performance leading to leakage and seal unreliability. As a response to industry needs, graphite and sealing element manufacturers offer “oxidation inhibited” or more simply “inhibited” grades of graphite that show improved resistance to oxidation, however, there is no industry accepted definition that assures the purchaser that these grades of graphite do in fact have sufficient oxidation resistance for their specific application. This paper proposes a performance based definition for oxidation inhibited graphite and a protocol to convert test results to index any graphite resistance to oxidation. Furthermore, the paper provides a methodology to determine temperature limits and/or service life expectations for any graphite grade.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Guo ◽  
Sheng Xue ◽  
Chunshan Zheng ◽  
Yaobin Li

To ensure the sealing effect of gas extraction borehole in underground coal mine and improve the concentration of gas extraction, a kind of high-flow sealing material which can be injected into the microcracks around borehole was developed. The ultrafine cement as the base material, with water-reducing agent, expansion agent, retarder, the material, and water combined stir, will form a kind of colloid with high fluidity and slightly expansibility. This paper analyzes the differences between the new high-fluidity sealing material and ordinary cement materials in expansion performance, compressive strength, and sealing performance. Scanning electron microscope and mercury intrusion method were used to analyze the differences in microscopic morphology and pore structure of these two materials. The experimental results show that the new high-fluidity sealing material has an excellent fluidity of 295.5 mm with an expansion rate of 60 d being 1.562%. The new high-fluidity sealing material is convenient for grouting with strong material permeability and superior sealing performance. Field test results show that the effect of the new high-fluidity sealing material is better than the ordinary cement materials. The average drainage concentration and flux during the drainage period were 59.07% and 0.243 m3/min, respectively, which showed that the drainage efficiency was significantly improved. This novel sealing material is of great significance for improving the efficiency of drilling and drainage.


2012 ◽  
Vol 594-597 ◽  
pp. 2154-2157
Author(s):  
Xiao Tan Hou ◽  
Zhi Hua Wang ◽  
An Gui Li

This study intends to investigate indoor air quality of kitchen such as velocity, temperature, humidity and air contaminant (carbon monoxide and carbon dioxide). Test results show that workspace local temperature is up to 49.6°C at 12:50 due to the workload increased at the diner peak and the largest CO and CO2concentration were 14.8 ppm and 2145 ppm respectively after 2 hours cooking, which are above the acceptance criteria (CO<10ppm and CO2<1000ppm), and it gives serious impact on the staff's physical health. It is necessary to improve indoor air quality through kitchen ventilation.


Author(s):  
R. K. Vagapov ◽  
D. N. Zapevalov ◽  
K. A. Batullin

The paper investigates aspects of the development of corrosion processes under conditions of moisture condensation in the gas phase in the presence of carbon dioxide, which lead to the formation of local damage. The authors developed and tested a methodology for conducting steels corrosion testing The causes of the formation and the corrosive effect of moisture condensation on steel under conditions of carbon dioxide corrosion at gas production facilities are analyzed. It was found that at elevated temperatures, when the temperature difference is higher, more moisture condenses on the surface of the steel, which leads to an increase in the rate of both general and local corrosion by 2–3 times, compared to room temperature. The increased localization of corrosion processes under conditions of moisture condensation and the presence of CO2 makes the depth index of steel corrosion much higher than the general corrosion rate. When assessing the corrosiveness of environments with condensation of the aqueous phase, the rate of corrosion associated with the depth of the observed corrosion damage should be taken into account. According to the test results, it was determined that samples from the weld compared with the sample from the main body of the pipe differ in the degree of localization of corrosion in conditions of moisture condensation.


2018 ◽  
Vol 175 (4) ◽  
pp. 3-9
Author(s):  
Monika ANDRYCH-ZALEWSKA ◽  
Zdzisław CHŁOPEK ◽  
Jerzy MERKISZ ◽  
Jacek PIELECHA

Test results of exhaust emission sensitivity to engine operating conditions from a vehicle with a compression ignition engine have been analyzed. These results were determined in driving tests: NEDC (New European Driving Cycle), RDE (Real Driving Emissions) and Malta, an original drive cycle developed at Poznan University of Technology. The tests in the NEDC and Malta cycles were carried out on the engine dynamometer in driving tests simulation conditions, while the RDE test was carried out in the real conditions of passenger car traffic. The mean exhaust emission test results of carbon monoxide, hydrocarbons, nitrogen oxides and carbon dioxide as well as the mean particle number in individual tests have been provided. A high sensitivity of the tested emission values to the changes in engines operating conditions was found, both for static and dynamic conditions. The strongest impact of engine operating conditions was found for hydrocarbons emissions and the number of particles, followed by carbon monoxide, a smaller impact was found for nitrogen oxides and carbon dioxide. The largest differences in the values characterizing exhaust emissions were found for the NEDC test, which differed the most in dynamic engine operating conditions from other tests that closer resemble real driving conditions of vehicles.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract NICROFER 6023 is a nickel-chromium-iron alloy containing small quantities of aluminum. It has excellent resistance to oxidation at high temperatures, good resistance in oxidizing sulfur-bearing atmospheres and good resistance to carburizing conditions. The alloy has good mechanical properties at room and elevated temperatures. Its applications include heat treating furnace equipment, chemical equipment in various industries, and power plant equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-314. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Inconel Alloy N06230 is a Ni-Cr-W alloy with excellent strength and resistance to oxidation at elevated temperatures. This alloy offers good metallurgical stability and is readily fabricated by conventional processes and procedures. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-667. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
1958 ◽  
Vol 7 (3) ◽  

Abstract INCONEL 702 is a nickel-base alloy having moderate strength with exceptional oxidation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-40. Producer or source: International Nickel Company Inc..


Sign in / Sign up

Export Citation Format

Share Document