scholarly journals Experimental Research on Performance of New Gas Drainage Borehole Sealing Material with High Fluidity

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Guo ◽  
Sheng Xue ◽  
Chunshan Zheng ◽  
Yaobin Li

To ensure the sealing effect of gas extraction borehole in underground coal mine and improve the concentration of gas extraction, a kind of high-flow sealing material which can be injected into the microcracks around borehole was developed. The ultrafine cement as the base material, with water-reducing agent, expansion agent, retarder, the material, and water combined stir, will form a kind of colloid with high fluidity and slightly expansibility. This paper analyzes the differences between the new high-fluidity sealing material and ordinary cement materials in expansion performance, compressive strength, and sealing performance. Scanning electron microscope and mercury intrusion method were used to analyze the differences in microscopic morphology and pore structure of these two materials. The experimental results show that the new high-fluidity sealing material has an excellent fluidity of 295.5 mm with an expansion rate of 60 d being 1.562%. The new high-fluidity sealing material is convenient for grouting with strong material permeability and superior sealing performance. Field test results show that the effect of the new high-fluidity sealing material is better than the ordinary cement materials. The average drainage concentration and flux during the drainage period were 59.07% and 0.243 m3/min, respectively, which showed that the drainage efficiency was significantly improved. This novel sealing material is of great significance for improving the efficiency of drilling and drainage.

2019 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Endang Kusdarjanti ◽  
Mia Laksmi L. ◽  
Okti Setyowati

Background: Acrylic resin is the most commonly used denture base material. One disadvantage is that it can absorb water that can cause changes in dimensions. Changes in the dimensions of acrylic resin are influenced by processing acrylic resin. At present injection molding techniques are known to be better than compression molding. Dimension changes due to water absorption occur in the first 7 days and interval intervals of up to 12 days. Purpose: this study was to determine whether immersion of acrylic resin with Injection molding techniques had an effect on changes in dimensions. Method: The study was conducted on acrylic resin test rods with a size of 25 mm x 25 mm x 5 mm. by using injection molding techniques. Acrylic resins are immersed in water for 24 hours, 48 hours and 12 days. Changes in dimensions are measured using a caliper with an accuracy of 0.01 mm. Statistical analysis was performed using the normality test, homogeneity test, and ANOVA test. Results: this study found that there was no change in dimensions of acrylic resin with water-immersed injection molding techniques 24 hours, 48 hours and 12 days. Conclusion: That immersion of acrylic resin in water at 24 hours, 48 hours, and 12 days with injection molding techniques did not affect changes in dimensions.


Author(s):  
Koji Kondo ◽  
Toshiyuki Sawa

FEM calculations and leakage experiments are carried out for bolted flanged connections with metal flat gaskets. It is found that the sealing performance of bolted flanged connections with raised face metal gaskets under internal pressure is improved significantly when the contact gasket stress reaches the gasket yield stress. In our FEM calculations it is demonstrated that the contact gasket stress at the outside diameter is bigger than that at the inside diameter due to the flange rotation. It is also found from the leakage test results and the FEM calculations that the sealing performance of the bolted flange connections with metal flat gasket is better than that of the metal gasket in platen device tests,. In addition, the contact stress in the joints with RTJ (ring type joint) gasket is examined and 4 stress peaks on the oval type and 8 peaks on the octagonal type are found. From the obtained results, a method for determining the bolt preloads in the bolted joints using flat metal gaskets and RTJ gaskets under internal pressure is proposed taking account the given allowable leak rate. Finally, the leak rates for bolted flanged connections tightened under internal pressure are compared with the experimental results. The new method can be proposed for determining the bolt preload for bolted flange connections with metal gaskets under internal pressure at room temperature.


Author(s):  
Benjamin F. Hantz

When exposed to air at elevated temperatures, graphite oxidizes by a reaction between carbon and oxygen forming carbon monoxide and carbon dioxide. Using graphite as a sealing material and exposing it to the aforementioned environment, the reaction consumes graphite which degrades the sealing performance leading to leakage and seal unreliability. As a response to industry needs, graphite and sealing element manufacturers offer “oxidation inhibited” or more simply “inhibited” grades of graphite that show improved resistance to oxidation, however, there is no industry accepted definition that assures the purchaser that these grades of graphite do in fact have sufficient oxidation resistance for their specific application. This paper proposes a performance based definition for oxidation inhibited graphite and a protocol to convert test results to index any graphite resistance to oxidation. Furthermore, the paper provides a methodology to determine temperature limits and/or service life expectations for any graphite grade.


2019 ◽  
Vol 9 (01) ◽  
pp. 47-54
Author(s):  
Rabbai San Arif ◽  
Yuli Fitrisia ◽  
Agus Urip Ari Wibowo

Voice over Internet Protocol (VoIP) is a telecommunications technology that is able to pass the communication service in Internet Protocol networks so as to allow communicating between users in an IP network. However VoIP technology still has weakness in the Quality of Service (QoS). VOPI weaknesses is affected by the selection of the physical servers used. In this research, VoIP is configured on Linux operating system with Asterisk as VoIP application server and integrated on a Raspberry Pi by using wired and wireless network as the transmission medium. Because of depletion of IPv4 capacity that can be used on the network, it needs to be applied to VoIP system using the IPv6 network protocol with supports devices. The test results by using a wired transmission medium that has obtained are the average delay is 117.851 ms, jitter is 5.796 ms, packet loss is 0.38%, throughput is 962.861 kbps, 8.33% of CPU usage and 59.33% of memory usage. The analysis shows that the wired transmission media is better than the wireless transmission media and wireless-wired.


2020 ◽  
Vol 3 (1) ◽  
pp. 39-50
Author(s):  
Bernadeta Ritawati ◽  
Sri Wahyuni

This research is a quasi-experimental study that aims to determine the comparison of students' mathematical communication abilities with the cooperative learning model of the NHT and PPT media in class VII SMP Negeri 02 Ngabang. The population in this study were all students of class VII SMP 02 Ngabang consisting of 3 classes. The sample in this study was taken by using the Random Sampling Cluster technique. Class VII A as class I experimental class with 24 students and class VII B as a experimental class II with 24 students. The instruments used were pretest and posttest in the form of description. Data analysis uses the t test with a significance level of 5%. The results showed the average posttest for the NHT class was 72.5 and the average posttest for the PP class was 66.666. From the posttest hypothesis test results obtained t hitung> t tabel (1.9522> 1,667). Because t_hitung> t_tabel, H_0 is rejected and H_a is accepted. This means that students' mathematical communication skills taught with the NHT are better than using Power point media.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


Author(s):  
Minghao Yi ◽  
Liang Wang ◽  
Congmeng Hao ◽  
Qingquan Liu ◽  
Zhenyang Wang

AbstractThe purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane (CMM), and the sealing depth is a key factor that affects the performance of underground methane drainage. In this work, the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth. The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively. Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones, and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone. Moreover, sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance. Considering these findings, a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period. The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage, thereby improving considerably the drainage and utilization rates of CMM.


2007 ◽  
Vol 330-332 ◽  
pp. 495-498
Author(s):  
Chao Zou ◽  
Wen Jian Weng ◽  
Xu Liang Deng ◽  
Kui Cheng ◽  
Pi Yi Du ◽  
...  

Two starting collagens, sponge and floc collagen, were used to prepare collagen/tricalcium phosphate (TCP) composites. The resulting composites were porous and had 200μm pore size. However, there was a difference in the microstructure of the pore walls for the composites derived from the two collagens, the pore walls in sponge collagen/TCP composite were still porous and had 200 nm micropores size, TCP particles were trapped in collagen matrices. While floc collagen/TCP composite had smooth and dense walls in which TCP particles were embedded. The difference could be attributed to the starting collagen with different status. Sponge collagen has a soft structure, which easily becomes disassembled fibrils during alkali treatment, the disassembled fibrils are integrated again to form a dense morphology for pore walls after freeze-drying. While floc collagen has already a low disassembly degree, the alkali treatment could not be able to separate the fibrils, this remains as micropores in pore walls after freeze-drying. Both porous composites are significant in bone tissue engineering or regeneration. MTT test results showed the two composites had good cytocompatibility, and sponge collagen/TCP composite was somewhat better than floc collagen/TCP composite, which could result from that micropores derived roughness in pore walls of sponge collagen/TCP composite is suitable for cell growth.


2011 ◽  
Vol 194-196 ◽  
pp. 1253-1256
Author(s):  
Ya Ni Zhang ◽  
Mao Sheng Zheng ◽  
Jie Wu Zhu

The corrosion behavior of CuCr, CuZr and CuCrZr alloys in NaCl solution is reported in this paper. The corrosion performance has been evaluated in NaCl solution atmosphere. The results show the corrosion resistance of pure copper decrease with the addition of the alloying elements initially. However, in the later exposure stages, the corrosion resistance of CuZr and CuCrZr alloy deteriorates significantly while the corrosion resistance of CuCr alloy is slightly better than that of pure copper. In addition, the results of the electrochemical experiments indicate that the different behavior for the element Cr and Zr in the base material and corrosion scales lead to the change of the corrosion resistance.


2010 ◽  
Vol 163-167 ◽  
pp. 3297-3300 ◽  
Author(s):  
Jia Wei Shi ◽  
Hong Zhu ◽  
Zhi Shen Wu ◽  
Gang Wu

Coupon tests were conducted to investigate the mechanical characteristics of basalt FRP (BFRP) sheet, basalt-carbon hybrid FRP sheets and the corresponding epoxy rein under the effect of freeze-thaw cycling. FRP sheets and epoxy rein coupons were subjected to up to 200 and 250 freeze-thaw cycles respectively. Test parameters included the number of freeze-thaw cycles and the types of FRP composites. Test results show that (1) BFRP sheet perform better than CFRP or GFRP sheets under high freeze-thaw cycles; (2) exposed hybrid FRP sheets not only show very little loss in mechanical properties, but also contribute to the stability of test data; (3) mechanical properties of rein epoxy decrease significantly with increasing freeze-thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document