scholarly journals Tunable EOS Material Model in the Simulation of Pulsed Mercury Spallation Target Vessel

Author(s):  
Lianshan Lin ◽  
Drew Winder

Abstract A pulsed spallation target is subjected to very short (∼1μs) but intense loads from repeated proton pulses. The effect of this pulsed loading on the stainless-steel target module that contains flowing mercury target material is difficult to predict. Different simulation approaches and material models for the mercury have been tried. To date the best matching simulation to the experimental data was obtained by an equation of state (EOS) material model with a specified tensile cutoff pressure, which simulates the cavitation threshold [1]. The inclusion of a threshold to represent cavitation was a key parameter in achieving successful predictions of stress waves triggered by the high energy pulse striking the mercury and vessel. However, recent measurements of strain responses of target modules showed that significant discrepancy between the measured strain and simulated value with the EOS mercury model still exists. These differences grow to irreconcilable values when non-condensable helium gas is intentionally injected into the flowing mercury. A novel EOS mercury model embedded into ABAQUS VUMAT has been investigated in this project, which introduces the concept of proportional, integral, and derivative (PID) control into the mercury EOS model. By tuning the new introduced PID parameters (Kp, Ki and Kd), we replace the specified cutoff pressure with an adjustable spring-damper-like material behavior which may better match the complex dynamics of the mercury and helium mixture. This approach is expected to reduce the gap between measured and simulated vessel strain responses. Primitive application of this tunable EOS mercury model on prototypic shape experimental target has demonstrated its capability and potential of improving mechanical behavior of EOS mercury with cutoff pressure considered.

1998 ◽  
Vol 555 ◽  
Author(s):  
H. Fritze ◽  
A. Schnittker ◽  
T. Witke ◽  
C. Rüscher ◽  
S. Weber ◽  
...  

AbstractPulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting point target materials and the preparation of films with complex composition. High energy impact leads to melting and evaporation of the target material in a single step. In case of mullite ablation, the flux of the metal components is stoichiometric. Under reduced pressure the oxygen content in the layers decreases. However, after a short oxidation treatment, the formation of mullite in the coating is completed, as confirmed by IR spectroscopy and XRD investigations. For a commercial Si-SiC precoated C/C material, the effectiveness of additional PLD mullite layers as outer oxidation protection is tested in the temperature range 773 K < T < 1873 K. Mullite coatings with a thickness of 2.5 pm improve the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface, all samples exhibited a mass increase upon oxidation. For oxidation durations of three days, only amorphous SiO2 is formed at the mullite-SiC interface. The inward diffusion of oxygen across the outer mullite-containing layer controls the kinetics of the reaction, as was deduced from 18O diffusivity measurements in PLD mullite layers. At temperatures close to the eutectic temperature (1860 K), mullite can seal defects. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data.


1983 ◽  
Vol 50 (4a) ◽  
pp. 740-742 ◽  
Author(s):  
B. Stora˚kers

The classical Fo¨ppl equations, governing the deflection of plane membranes, constitute the first-order consistent approximation in the case of linear elastic material behavior. It is shown that despite the static and kinematic nonlinearities present, for arbitrary load histories a correspondence principle for viscoelastic material behavior exists if all relevant relaxation moduli are of uniform time dependence. Application of the principle is illustrated by means of a popular material model.


Author(s):  
Sunil K. Sinha ◽  
Kevin E. Turner ◽  
Nitesh Jain

In the present paper, a hydrodynamic bird material model made up of water and air mixture is developed, which produces good correlation with the measured strain-gauge test data in a panel test. This parametric bird projectile model is used to generate the time-history of the transient dynamic loads on the turbofan engine blades for different size birds impacting at varying span locations of the fan blade. The problem is formulated in 3D vector dynamics equations using a nonlinear trajectory analysis approach. The analytical derivation captures the physics of the slicing process by considering the incoming bird in the shape of a cylindrical impactor as it comes into contact with the rotating fan blades modeled as a pretwisted plate with a camber. The contact-impact dynamic loading on the airfoil produced during the bird-strike is determined by solving the coupled nonlinear dynamical equations governing the movement of the bird-slice in time-domain using a sixth-order Runge-Kutta technique. The analytically predicted family of load time-history curves enables the blade designer to readily identify the critical impact location for peak dynamic loading condition during the bird-ingestion tests mandated for certification by the regulatory agencies.


2000 ◽  
Vol 25 (8) ◽  
pp. 587 ◽  
Author(s):  
E. Zeek ◽  
R. Bartels ◽  
M. M. Murnane ◽  
H. C. Kapteyn ◽  
S. Backus ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3879 ◽  
Author(s):  
Pil Sang ◽  
Junseok Heo ◽  
Hui Park ◽  
Hyoung Baac

We demonstrate a photoacoustic sensor capable of measuring high-energy nanosecond optical pulses in terms of temporal width and energy fluence per pulse. This was achieved by using a hybrid combination of a carbon nanotube-polydimethylsiloxane (CNT-PDMS)-based photoacoustic transmitter (i.e., light-to-sound converter) and a piezoelectric receiver (i.e., sound detector). In this photoacoustic energy sensor (PES), input pulsed optical energy is heavily absorbed by the CNT-PDMS composite film and then efficiently converted into an ultrasonic output. The output ultrasonic pulse is then measured and analyzed to retrieve the input optical characteristics. We quantitatively compared the PES performance with that of a commercial thermal energy meter. Due to the efficient energy transduction and sensing mechanism of the hybrid structure, the minimum-measurable pulsed optical energy was significantly lowered, ~157 nJ/cm2, corresponding to 1/760 of the reference pyroelectric detector. Moreover, despite the limited acoustic frequency bandwidth of the piezoelectric receiver, laser pulse widths over a range of 6–130 ns could be measured with a linear relationship to the ultrasound pulse width of 22–153 ns. As CNT has a wide electromagnetic absorption spectrum, the proposed pulsed sensor system can be extensively applied to high-energy pulse measurement over visible through terahertz spectral ranges.


2014 ◽  
Author(s):  
Doruk Engin ◽  
Ibraheem Darab ◽  
John Burton ◽  
Jean-Luc Fouron ◽  
Frank Kimpel ◽  
...  

Author(s):  
Martin Storheim ◽  
Ekaterina Kim ◽  
Jørgen Amdahl ◽  
Sören Ehlers

Large natural resources in the Arctic region will in the coming years require significant shipping activity within and through the Arctic region. When operating in Arctic open water, there is a significant risk of high-energy encounters with smaller ice masses like bergy bits and growlers. Consequently, there is a need to assess the structural response to high energy encounters in ice-infested waters. Experimental data of high energy ice impact are scarce, and numerical models could be used as a tool to provide insight into the possible physical processes and to their structural implications. This paper focuses on impact with small icebergs and bergy bits. In order to rely on the numerical results, it is necessary to have a good understanding of the physical parameters describing the iceberg interaction. Icebergs are in general inhomogeneous with properties dependent among other on temperature, grain size, strain rate, shape and imperfections. Ice crushing is a complicated process involving fracture, melting, high confinement and high pressures. This necessitates significant simplifications in the material modeling. For engineering purposes a representative load model is applied rather than a physically correct ice material model. The local shape dependency of iceberg interaction is investigated by existing representative load material models. For blunt objects and moderate deformations the models agree well, and show a similar range of energy vs. hull deformation. For sharper objects the material models disagree quite strongly. The material model from Liu et.al (2011) crush the ice easily, whereas the models from Gagnon (2007) and Gagnon (2011) both penetrate the hull. From a physical perspective, a sharp ice edge should crush initially until sufficient force is mobilized to deform the vessel hull. Which ice features that will crush or penetrate is important to know in order to efficiently design against iceberg impact. Further work is needed to assess the energy dissipation in ice during crushing, especially for sharp features. This will enable the material models to be calibrated towards an energy criterion, and yield more coherent results. At the moment it is difficult to conclude if any of the ice models behave in a physically acceptable manner based on the structural deformation. Consequently, it is premature to conclude in a design situation as to which local ice shapes are important to design against.


2007 ◽  
Vol 345-346 ◽  
pp. 1241-1244 ◽  
Author(s):  
Mohd. Zahid Ansari ◽  
Sang Kyo Lee ◽  
Chong Du Cho

Biological soft tissues like muscles and cartilages are anisotropic, inhomogeneous, and nearly incompressible. The incompressible material behavior may lead to some difficulties in numerical simulation, such as volumetric locking and solution divergence. Mixed u-P formulations can be used to overcome incompressible material problems. The hyperelastic materials can be used to describe the biological skeletal muscle behavior. In this study, experiments are conducted to obtain the stress-strain behavior of a solid silicone rubber tube. It is used to emulate the skeletal muscle tensile behavior. The stress-strain behavior of silicone is compared with that of muscles. A commercial finite element analysis package ABAQUS is used to simulate the stress-strain behavior of silicone rubber. Results show that mixed u-P formulations with hyperelastic material model can be used to successfully simulate the muscle material behavior. Such an analysis can be used to simulate and analyze other soft tissues that show similar behavior.


Author(s):  
Sean B. Leen ◽  
Aditya Deshpande ◽  
Thomas H. Hyde

This paper describes high temperature cyclic and creep relaxation testing and modeling of a high nickel-chromium material (XN40F) for application to the life prediction of superplastic forming (SPF) tools. An experimental test program to characterize the high temperature cyclic elastic-plastic-creep behavior of the material over a range of temperatures between 20°C and 900°C is described. The objective of the material testing is the development of a high temperature material model for cyclic analyses and life prediction of SPF dies for SPF of titanium aerospace components. A two-layer viscoplasticity model, which combines both creep and combined isotropic-kinematic plasticity, is chosen to represent the material behavior. The process of material constant identification for this model is presented, and the predicted results are compared with the rate-dependent (isothermal) experimental results. The temperature-dependent material model is furthermore applied to simulative thermomechanical fatigue tests, designed to represent the temperature and stress-strain cycling associated with the most damaging phase of the die cycle. The model is shown to give good correlation with the test data, thus vindicating future application of the material model in thermomechanical analyses of SPF dies for distortion and life prediction.


Sign in / Sign up

Export Citation Format

Share Document