Utilisation Limits of 1¼Cr½Mo (SA387-11-2) Steel in High Plate Thickness

Author(s):  
Ingo Detemple ◽  
Bastian Philippi ◽  
Jörg Maffert

Abstract Technical requirements for petrochemical reactor steels have proliferated in the last decade. The need to increase economic benefits together with higher operating temperatures and pressures are leading to the construction of higher capacity reactors with thicker walls. Also, more and more severe and sometimes conflicting requirements in these specifications make it difficult, to derivate a steel design, e.g. in terms of chemical composition and processing parameters, for an optimized balance between quality demands and economical aspects. The design of pressure vessel for petrochemical industry is based on mechanical properties and the design method, which are given by the construction code.

2013 ◽  
Vol 8 (22) ◽  
pp. 37
Author(s):  
Mauro Carlos Souza ◽  
Antonio Carlos de Araújo Santos ◽  
Wilma Clemente de Lima Pinto ◽  
Mila Rosendal Avelino

The mechanical properties of cast metallic materials are strongly influenced by processing parameters, such as percentage of silicate, sand granulometry, and metallurgical processing. The ductile iron cast produced by the CO2 process depends on variables that determine the behavior of the material in service, such as the cooling rate and chemical composition. This study evaluated the influence of the cooling rate on the spheroidic graphite. In order to determine this effect, a simulation was performed in specimens with 20, 25, and 30 mm in thickness, through the characterization of type, measurement of nodule size, and distribution of nodules. Chemical analysis and mechanical resistance tests were performed. The 25 mm thick specimen showed the best behavior among the three thicknesses evaluated, presenting the formation of many small nodules and a small amount of larger nodules in the center.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Sunčana Smokvina Hanza ◽  
Božo Smoljan ◽  
Lovro Štic ◽  
Krunoslav Hajdek

An increase in technical requirements related to the prediction of mechanical properties of steel engineering components requires a deep understanding of relations which exist between microstructure, chemical composition and mechanical properties. This paper is dedicated to the research of the relation between steel hardness with the microstructure, chemical composition and temperature of isothermal decomposition of austenite. When setting the equations for predicting the hardness of microstructure constituents, it was assumed that: (1) The pearlite hardness depends on the carbon content in a steel and on the undercooling below the critical temperature, (2) the martensite hardness depends primarily on its carbon content, (3) the hardness of bainite can be between that of untempered martensite and pearlite in the same steel. The equations for estimation of microstructure constituents’ hardness after the isothermal decomposition of austenite have been proposed. By the comparison of predicted hardness using a mathematical model with experimental results, it can be concluded that hardness of considered low-alloy steels could be successfully predicted by the proposed model.


2013 ◽  
Vol 8 (22) ◽  
pp. 37-41
Author(s):  
Mauro Carlos Souza ◽  
Antonio Carlos de Araújo Santos ◽  
Wilma Clemente de Lima Pinto ◽  
Mila Rosendal Avelino

The mechanical properties of cast metallic materials are strongly influenced by processing parameters, such as percentage of silicate, sand granulometry, and metallurgical processing. The ductile iron cast produced by the CO2 process depends on variables that determine the behavior of the material in service, such as the cooling rate and chemical composition. This study evaluated the influence of the cooling rate on the spheroidic graphite. In order to determine this effect, a simulation was performed in specimens with 20, 25, and 30 mm in thickness, through the characterization of type, measurement of nodule size, and distribution of nodules. Chemical analysis and mechanical resistance tests were performed. The 25 mm thick specimen showed the best behavior among the three thicknesses evaluated, presenting the formation of many small nodules and a small amount of larger nodules in the center.


2014 ◽  
Vol 1004-1005 ◽  
pp. 131-135
Author(s):  
Li Feng Ma ◽  
Yi Min Gao

The state analysis and evaluation of the furnace pipe including of riser pipe, collecting gas pipe run over service period by EPMA, dye penetration inspection, macro and microstructure analysis, mechanical properties at room and high temperature and high temperature rupture property. The results show that the chemical composition meets the technical requirements, Macro-and microstructure are good, corrosion of inside and outside surface is minor, the remaining life of pipe analyzed is longer by fitting extrapolation of data of rupture property in the L-M curve. It is good proposal to production enterprises that higher level of material is selected to reduce the wall thickness properly, expand the diameter and improve efficiency.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract SANDVIK SANICRO 31 is an iron-nickel-chromium alloy having good resistance to corrosion and oxidation and good mechanical properties at elevated temperatures. It is recommended for electrical sheathing, pyrometer tubes, equipment for heat treating and furnace tubes and other equipment in the petrochemical industry. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-172. Producer or source: Sandvik.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document