Intra- and Extrafibrillar Fluid Exchange in the Disc

Author(s):  
Y. Schroeder ◽  
S. Sivan ◽  
W. Wilson ◽  
J. M. Huyghe ◽  
A. Maroudas ◽  
...  

The mechanical properties of the intervertebral disc are regulated by its biochemical composition. With ageing and degeneration the water content of the disc decreases which highly influences the mechanical properties. The disc is subjected to a combination of elastic, viscous and osmotic forces. Osmotic forces are shown to have a major impact on crack opening and propagation [1] and on cellular responses [2]. In particular, osmosis provides an understanding on why fissures in the degenerating disc are so poorly related to external mechanical load [3].

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jik Hang Clifford Lee ◽  
Benjamin Ondruschka ◽  
Lisa Falland-Cheung ◽  
Mario Scholze ◽  
Niels Hammer ◽  
...  

With increasingly detailed imaging and mechanical analysis, modalities need arises to update methodology and assessment criteria for skull bone analysis to understand how bone microarchitecture and the presence of attached tissues may affect the response to mechanical load. The main aim was to analyze the effect of macroscopic and microstructural features, as well as periosteal attachment, on the mechanical properties of human skull bone. Fifty-six skull specimens from ethanol-phenoxyethanol-embalmed cadavers were prepared from two human cadavers. Assuming symmetry of the skull, all samples from one-half each were stripped of periosteum and dura mater, while the soft tissues were kept intact on the remaining samples on the contralateral side. The specimens were analyzed using microcomputed tomography to assess trabecular connectivity density, total surface area, and volume ratio. The specimens were loaded under three-point bend tests until fracture with optical co-registration. The bone fragments were then lyophilized to measure their water content. With increasingly detailed imaging and mechanical analysis modalities, there is a need to update methodology and assessment criteria for skull bone analysis to understand how the bone microarchitecture and the presence of attached tissues may affect the response to mechanical load. The mechanical properties were negatively correlated to bone thickness and water content. Conversely, most microarchitectural features did not influence either mechanical parameter. The correlation between mechanical response data and morphologic properties remains similar between the results of embalmed tissues presented here and fresh osseous tissue from literature data. The findings presented here add to the existing methodology to assess human skull for research purposes. The interaction between most microarchitectural features in ethanol-phenoxyethanol-embalmed embalmed skull samples and bending stress appear to be minute.


Author(s):  
Woojin M. Han ◽  
Nandan L. Nerurkar ◽  
Lachlan J. Smith ◽  
Nathan T. Jacobs ◽  
Robert L. Mauck ◽  
...  

The annulus fibrosus (AF) is a multi-lamellar fibrocartilagenous ring in the intervertebral disc. The variation of biochemical composition from the outer to the inner AF is largely responsible for the heterogeneous mechanical properties. In vitro tissue-level studies require mechanical testing in aqueous buffers to avoid tissue dehydration. The varying glycosaminoglycan (GAG) contents from outer to inner AF suggest that the response to high and low PBS osmolarity may also be different with radial position. Previous studies in tendon and ligament have been conflicting: soaking tendon fascicles in PBS decreased tensile modulus1 and treating ligament in buffer had no effect on modulus.2


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2021 ◽  
Vol 54 (17) ◽  
pp. 8067-8076 ◽  
Author(s):  
Motofumi Osaki ◽  
Shin Yonei ◽  
Chiharu Ueda ◽  
Ryohei Ikura ◽  
Junsu Park ◽  
...  

2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


Soft Matter ◽  
2021 ◽  
Author(s):  
Fabio Guglietta ◽  
Marek Behr ◽  
Giacomo Falcucci ◽  
Mauro Sbragaglia

We use mesoscale numerical simulations to investigate the unsteady dynamics of a single red blood cell (RBC) subjected to an external mechanical load. We carry out a detailed comparison between...


2000 ◽  
Vol 88 (3) ◽  
pp. 1022-1028 ◽  
Author(s):  
Lu Wang ◽  
Kenneth L. Pinder ◽  
Joel L. Bert ◽  
Mitsushi Okazawa ◽  
Peter D. Paré

Folding of the airway mucosal membrane provides a mechanical load that impedes airway smooth muscle contraction. Mechanical testing of rabbit tracheal mucosal membrane showed that the membrane is stiffer in the longitudinal than in the circumferential direction of the airway. To explain this difference in the mechanical properties, we studied the morphological structure of the rabbit tracheal mucosal membrane in both longitudinal and circumferential directions. The collagen fibers were found to form a random meshwork, which would not account for differences in stiffness in the longitudinal and circumferential directions. The volume fraction of the elastic fibers was measured using a point-counting technique. The orientation of the elastic fibers in the tissue samples was measured using a new method based on simple geometry and probability. The results showed that the volume fraction of the elastic fibers in the rabbit tracheal mucosal membrane was ∼5% and that the elastic fibers were mainly oriented in the longitudinal direction. Age had no statistically significant effect on either the volume fraction or the orientation of the elastic fibers. Linear correlations were found between the steady-state stiffness and the quantity of the elastic fibers oriented in the direction of testing.


Sign in / Sign up

Export Citation Format

Share Document