Comparison of Three Material Models to Predict the Time-Dependent Deformation of a Single Cell Under Micropipette Aspiration

Author(s):  
Ruogang Zhao ◽  
Kristine Wyss ◽  
Craig A. Simmons

Micropipette aspiration is an experimental technique that is used widely to measure the mechanical properties of single cells [1]. The viscoelastic properties of the probed cell are often estimated by fitting experimental data to a three-parameter standard linear solid (SLS) half-space model (e.g., [1]). However, this analytical model does not account for the large strains that can occur with micropipette aspiration. This limitation has motivated the development of numerical methods to interpret the experimental data. For example, Zhou [2] implemented a material model combining a hyperelastic neo-Hookean material and a viscoelastic SLS material in an axisymmetric finite element (FE) model to simulate large strain micropipette aspiration of a suspended cell. The time-dependent creep deformation of cells has also been described by power-law rheology [3]; this material model has been applied to micropipette aspiration of nuclei [4], but not whole cells.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Amirhossein Jafari Bidhendi ◽  
Rami K. Korhonen

Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells.


2012 ◽  
Vol 735 ◽  
pp. 198-203 ◽  
Author(s):  
Alexander J. Carpenter ◽  
Eric M. Taleff ◽  
Louis G. Hector ◽  
Jon T. Carter ◽  
Paul E. Krajewski

A time-dependent material constitutive model is developed for the deformation of wrought Mg AZ31 sheet material at 450°C. This material model is used to simulate gas-pressure bulge forming of AZ31 sheet into hemispherical domes. Finite-element-method (FEM) simulations using this material model are compared against experimental data obtained for dome height as a function of forming time under forming conditions identical to those assumed in the simulations. The time-dependent material model predicts experimental dome heights during forming with a quite useful accuracy. The most significant advantage of the time-dependent material model is that it can address the effect of preheating time on forming. Preheating times shorter than ~120 s produce an increase in forming rate. This material model provides a quantitative means of accounting for that effect.


Author(s):  
Muralikrishna Maddali ◽  
Chirag S. Shah ◽  
King H. Yang

Traumatic rupture of the aorta (TRA) is responsible for 10% to 20% of motor vehicle fatalities [1]. Both finite element (FE) modeling and experimental investigations have enhanced our understanding of the injury mechanisms associated with TRA. Because accurate material properties are essential for the development of correct and authoritative FE model predictions, the objective of the current study was to identify a suitable material model and model parameters for aorta tissue that can be incorporated into FE aorta models for studying TRA. An Ogden rubber material (Type 77B in LS-DYNA 970) was used to simulate a series of high speed uniaxial experiments reported by Mohan [2] using a dumbbell shaped FE model representing human aortic tissue. Material constants were obtained by fitting model simulation results against experimentally obtained corridors. The sensitivity of the Ogden rubber material model was examined by altering constants G and alpha (α) and monitoring model behavior. One single set of material constants (α = 25.3, G = 0.02 GPa, and μ = 0.6000E-06 GPa) was found to fit uniaxial data at strain rates of approximately 100 s−1 for both younger and older aortic tissue specimens. Until a better material model is derived and other experimental data are obtained, it is recommended that the Ogden material model and associated constants derived from the current study be used to represent aorta tissue properties when using FE methods to investigate mechanisms of TRA.


Author(s):  
X. Gary Tan ◽  
Robert N. Saunders ◽  
Amit Bagchi

Current understanding of blast induced traumatic brain injury (TBI) mechanisms is incomplete and limits the development of protective and therapeutic measures. Animal testing has been used as a surrogate for human testing. The correlation of animals to human responses is not well understood with a limited set of experimental data, because of ethical concerns and cost of live animal tests. The validated computational animal models can be used to supplement and improve the granularity of available data at a significantly reduced cost. A whole-body porcine high-fidelity computational model was developed based on the image data. The hyper-viscoelastic model was used for soft tissues to capture the rate dependence and large strain nonlinearity of the material. The shock wave interaction with a porcine subject in a shock tube was simulated using computational fluid dynamics (CFD) models, via a combination of 1-D, 2-D and 3-D numerical techniques. The shock wave loads were applied to the exterior of the porcine finite element (FE) model to simulate the pressure wave transmission through the body and capture its biomechanical response. The CFD and FE problems are solved using the explicit Eulerian and Lagrangian solvers, respectively, in the DoD Open Source code CoBi. The computational models were validated by comparing the simulation results with experimental data at specific instrumented locations. The predicted brain tissue stress-strain fields were used to determine the areas susceptible to blast induced TBI by using published mechanical injury thresholds. The validated porcine model can be used to better understand TBI and how injury in animals corresponds to injury in humans. The coupled Eurlerian and Lagrangian approaches developed in this paper can be extended to other simulations to improve the solution accuracy.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


2006 ◽  
Vol 129 (1) ◽  
pp. 211-215 ◽  
Author(s):  
John D. Fishburn

Within the current design codes for boilers, piping, and pressure vessels, there are many different equations for the thickness of a cylindrical section under internal pressure. A reassessment of these various formulations, using the original data, is described together with more recent developments in the state of the art. A single formula, which can be demonstrated to retain the same design margin in both the time-dependent and time-independent regimes, is shown to give the best correlation with the experimental data and is proposed for consideration for inclusion in the design codes.


2018 ◽  
Vol 294 (5) ◽  
pp. 1602-1608 ◽  
Author(s):  
Xiunan Yi ◽  
Eric J. Verbeke ◽  
Yiran Chang ◽  
Daniel J. Dickinson ◽  
David W. Taylor

Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.


Sign in / Sign up

Export Citation Format

Share Document