Characterization of Nanoparticle Distribution in Microcirculation Through a Microfluidics Device

Author(s):  
Antony Thomas ◽  
Jifu Tan ◽  
Susan Perry ◽  
Yaling Liu

Various methods of targeted nano drug delivery have been developed in recent years to reduce side effects, toxicity, and lower drug doses [1]. The use of nanoparticles in drug delivery provides advantages in drug targeting, delivery and release along with serving in diagnosis and therapy [2]. Higher percentage of nanoparticle drug is uptaken by the target cells while larger drug particles are easily cleaned off by the human body. Nanoparticles also have large surface to volume ratio, which aids in attachment of many functional groups and thereby enhances targeting.

Author(s):  
Eric Lueshen ◽  
Indu Venugopal ◽  
Andreas Linninger

Intrathecal (IT) drug delivery is a standard technique which involves direct injection of drugs into the cerebrospinal fluid (CSF)-filled space within the spinal canal to treat many diseases of the central nervous system. Currently, in order to reach the therapeutic drug concentration at certain locations within the spinal canal, high drug doses are used. With no method to deliver the large drug doses locally, current IT drug delivery treatments are hindered with wide drug distributions throughout the central nervous system (CNS) which cause harmful side effects. In order to overcome the current limitations of IT drug delivery, we have developed the novel method of intrathecal magnetic drug targeting (IT-MDT). Gold-coated magnetite nanoparticles are infused into a physiologically and anatomically relevant in vitro human spine model and then targeted to a specific site using external magnetic fields, resulting in a substantial increase in therapeutic nanoparticle localization at the site of interest. Experiments aiming to determine the effect of key parameters such as magnet strength, duration of magnetic field exposure, location of magnetic field, and ferrous implants on the collection efficiency of our superparamagnetic nanoparticles in the targeting region were performed. Our experiments indicate that intrathecal magnetic drug targeting and implant-assisted IT-MDT are promising techniques for concentrating and localizing drug-functionalized nanoparticles at required target sites within the spinal canal for potential treatment of diseases affecting the central nervous system.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2837 ◽  
Author(s):  
Longfa Kou ◽  
Qing Yao ◽  
Hailin Zhang ◽  
Maoping Chu ◽  
Yangzom D. Bhutia ◽  
...  

Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood–brain barrier, and blood–retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood–brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1544
Author(s):  
Isha Gaurav ◽  
Abhimanyu Thakur ◽  
Ashok Iyaswamy ◽  
Xuehan Wang ◽  
Xiaoyu Chen ◽  
...  

Extracellular vesicles (EVs) play major roles in intracellular communication and participate in several biological functions in both normal and pathological conditions. Surface modification of EVs via various ligands, such as proteins, peptides, or aptamers, offers great potential as a means to achieve targeted delivery of therapeutic cargo, i.e., in drug delivery systems (DDS). This review summarizes recent studies pertaining to the development of EV-based DDS and its advantages compared to conventional nano drug delivery systems (NDDS). First, we compare liposomes and exosomes in terms of their distinct benefits in DDS. Second, we analyze what to consider for achieving better isolation, yield, and characterization of EVs for DDS. Third, we summarize different methods for the modification of surface of EVs, followed by discussion about different origins of EVs and their role in developing DDS. Next, several major methods for encapsulating therapeutic cargos in EVs have been summarized. Finally, we discuss key challenges and pose important open questions which warrant further investigation to develop more effective EV-based DDS.


2019 ◽  
Vol 16 (9) ◽  
pp. 782-792
Author(s):  
Xiaosong Yang ◽  
Shizhu Chen ◽  
Xiao Liu ◽  
Miao Yu ◽  
Xiaoguang Liu

Bone diseases are a serious problem in modern human life. With the coming acceleration of global population ageing, this problem will become more and more serious. Due to the specific physiological characteristics and local microenvironment of bone tissue, it is difficult to deliver drugs to the lesion site. Therefore, the traditional orthopedic medicine scheme has the disadvantages of high drug frequency, large dose and relatively strong side effects. How to target deliver drugs to the bone tissue or even target cells is the focus of the development of new drugs. Nano drug delivery system with a targeting group can realize precise delivery of orthopedic drugs and effectively reduce the systemic toxicity. In addition, the application of bone tissue engineering scaffolds and biomedical materials to realize in situ drug delivery also are research hotspot. In this article, we briefly review the application of nanotechnology in targeted therapies for bone diseases.


Acta Naturae ◽  
2012 ◽  
Vol 4 (3) ◽  
pp. 72-81 ◽  
Author(s):  
A. V. Maksimenko

The results of the clinical use of thrombolytic and antithrombotic preparations developed on the basis of protein conjugates obtained within the framework of the conception of drug targeting delivery in the organism are considered. A decrease has been noted in the number of biomedical projects focused on these derivatives as a result of various factors: the significant depletion of financial and organizational funds, the saturation of the pharmaceutical market with preparations of this kind, and the appearance of original means for interventional procedures. Factors that actively facilitate the conspicuous potentiation of the efficacy of bioconjugates were revealed: the biomedical testing of protein domains and their selected combinations, the optimization of molecular sizes for the bioconjugates obtained, the density of target localization, the application of cell adhesion molecules as targets, and the application of connected enzyme activities. Enzyme antioxidants and the opportunity for further elaboration of the drug delivery conception via the elucidation and formation of therapeutic targets for effective drug reactions by means of pharmacological pre- and postconditioning of myocardium arouse significant interest.


Sign in / Sign up

Export Citation Format

Share Document