Design and Hydrodynamic Performance of Hybrid Flexural Pivot Gas Bearings for High Speed Oil-Free Micro Turbomachinery

Author(s):  
Kyuho Sim ◽  
Daejong Kim

This paper introduces new flexural pivot tilting pad gas bearings for high speed oil-free micro turbomachinery. The new flexural pivot tilting pad gas bearings have a special web geometry that provides a radial stiffness to accommodate rotor growths and high vibrations at critical speed, a pitching stiffness to accommodate rotor-bearing misalignments or rotor bending vibrations, and a very small tilting stiffness for rotor stability. Comprehensive numerical simulations involving orbit simulations and coast-down simulations were performed to investigate the effects of preloads and pivot offsets on the critical speeds and onset speeds of instability. Higher preload and pivot offset increased both critical speeds of the rotor-bearing system and onset speeds of instability due to the increased wedge effect. Design procedures of radial stiffness were presented considering both rotor centrifugal and thermal growths. From simple adiabatic solution of temperature distribution of gas film under pure hydrodynamic mode, enough bearing clearance at pivot was found to be a very important design aspect for high speed hydrodynamic gas bearings. Asymmetric radial stiffness was chosen as a final design to meet the target design speed of 180 krpm for bearing diameter of 28.52mm. Suggested tilting pad gas bearing with asymmetric radial stiffness was predicted to be very stable even under high external destabilizing forces.

Author(s):  
Robert N. Petro ◽  
Daejong Kim

Flexure pivot tilting pad gas bearings are recognized as an alternative to foil gas bearing [1, 2] for high speed turbomachinery, due to their capability to provide high rotor-bearing stability and simple structure. The flexure pivot design eliminates wear problem of axial pins or sockets at the pivots which are common in traditional tilting pad bearings. Added features such as a pivot offset and pad preloads can also be optimized to further improve the stability. Hybrid flexure pivot tilting pad gas bearing have also been reported [3]. The hybrid bearing has a direct air supply to the bearing clearance through a tiny orifice. It has shown that the hybrid operation of the tilting pad gas bearing can also increase the rotor-bearing stability [3]. In many microturbomachinery applications, hollow shafts are adopted to reduce the rotor weight and increase the bending critical speeds. However, the hollow shaft has a large centrifugal growth at high speeds requiring the gas bearing to have radial compliances. However, the radial compliance within the tilting pads can compromise the rotor-bearing stability because large displacement of the pads along the radial direction can cause hydrodynamic rotor-bearing instability associated with the increased bearing clearance (i.e. decreased effective preload) if the radial stiffness is not designed properly. Analytical studies show that optimal choice of pad radial stiffness could extend operating envelope of flexure pivot tilting pad gas bearing without deteriorating rotor-bearing stability [4]. High speed operation can generate significant amount of heat and adequate heat dissipation mechanism should also be developed. Hybrid operation is considered to have added benefit of effective cooling capability. This paper presents design studies on hybrid flexure tilting pad gas bearing with radial compliance which can accommodate large rotor centrifugal growth and also provide effective cooling mechanism.


Author(s):  
Luis San Andre´s ◽  
Keun Ryu

Gas film bearings enable the successful deployment of high-speed micro-turbomachinery. Foil bearings are in use; however, cost and lack of calibrated predictive tools prevent their widespread application. Other types of bearing configurations, simpler to manufacture and fully engineered, are favored by commercial turbomachinery manufacturers. Externally pressurized tilting pad bearings offer a sound solution for stable rotor support. This paper reports measurements of the rotordynamic response of a rigid rotor, 0.825 kg and 28.6 mm in diameter, supported on flexure pivot tilting pad hybrid gas bearings. The tests are performed for various imbalances, increasing supply pressures, and under load-on-pad (LOP) and load-between-pad (LBP) configurations. Presently, the initial condition of the test bearings shows sustained wear and dissimilar pad clearances after extensive testing reported earlier, see Ref. [1]. In the current measurements, there are no noticeable differences in rotor responses for both LOP and LBP configurations due to the light-weight rotor, i.e. small static load acting on each bearing. External pressurization into the bearings increases their direct stiffnesses and reduces their damping, while raising the system critical speeds with a notable reduction in modal damping ratios. The rotor supported on the worn bearings shows a ∼10% drop in first critical speeds and roughly similar modal damping than when tested with pristine bearings. Pressurization into the bearings leads to large times for rotor deceleration, thus demonstrating the little viscous drag typical of gas bearings. Rotor deceleration tests with manually controlled supply pressures eliminate the passage through critical speeds, thus paving a path for rotordynamic performance without large amplitude motions over extended regions of shaft speed. The rotordynamic analysis shows critical speeds and peak amplitudes of motion agreeing very well with the measurements. The synchronous rotor responses for increasing imbalances demonstrate the test system linearity. Superior stability and predictable performance of pressurized flexure pivot gas bearings can further their implementation in high performance oil-free microturbomachinery. More importantly, the measurements show the reliable performance of the worn bearings even when operating with enlarged and uneven clearances.


2006 ◽  
Vol 129 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Kyuho Sim ◽  
Daejong Kim

This paper introduces flexure pivot tilting pad gas bearings with pad radial compliance for high-speed oil-free microturbomachinery. The pad radial compliance was for accommodation of rotor centrifugal growth at high speeds. Analytical equation for the rotor centrifugal growth based on plane stress model agreed very well with finite element method results. Parametric studies on pivot offset, preload, and tilting stiffness were performed using nonlinear orbit simulations and coast-down simulations. Higher preload and pivot offset increased both critical speeds of the rotor-bearing system and onset speeds of instability due to the increased wedge effect. Pad radial stiffness and nominal bearing clearance were very important design parameters for high-speed applications due to the physically existing rotor centrifugal growth. From the series of parametric studies, the maximum achievable rotor speed was limited by the minimum clearance at the pad pivot calculated from the rotor growth and radial deflection of pads due to hydrodynamic pressure. Pad radial stiffness also affects the rotor instability significantly. Small radial stiffness could accommodate rotor growth more effectively but deteriorated rotor instability. From parametric studies on a bearing with 28.5mm in diameter and 33.2mm in length, optimum pad radial stiffness and bearing clearance are 1-2×107N∕m and 35μm, respectively, and the maximum achievable speed appears 180krpm. The final design with suggested optimum design variables could be also stable under relatively large destabilizing forces.


Author(s):  
Daejong Kim ◽  
Aaron Rimpel

Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery, and FPTPGBs with radially compliant pads (FPTPGB-Cs) permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with a ∼28.6 mm, 0.8 kg rotor above 120 krpm for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances, and viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Aaron Rimpel ◽  
Daejong Kim

Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery and FPTPGBs with radially compliant pads permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict the rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and to compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with an ∼28.6 mm, 0.8 kg rotor above 120 krpm, for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances and the viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.


Author(s):  
Deborah A. Wilde ◽  
Luis San Andre´s

Current applications of gas film bearings in high-speed oil-free micro-turbomachinery (<0.4 MW) require calibrated predictive tools to successfully deploy their application to mass-produced systems, for example oil-free turbochargers. The present investigation details the linear rotordynamic analysis of a test rotor supported on externally pressurized gas bearings. Model predictions are compared with the test rotordynamic response determined through comprehensive experiments conducted on a small rotor supported on three lobed hybrid (hydrostatic/hydrodynamic) rigid gas bearings. Predictions for the rotor-bearing system synchronous response to imbalance show good agreement with measurements during rotor coast downs, and manifest a decrease in damping ratio as the level of external pressurization increases. The rotor-bearing eigenvalue analysis forwards natural frequencies in accordance with the measurements, and null damping ratios evidence the threshold speeds of rotordynamic instability. Estimated whirl frequency ratios are typically 50% of rotor speed, thus predicting sub synchronous instabilities at lower rotor speeds than found experimentally when increasing the magnitude of feed pressurization. Rationale asserting the nature of the discrepancies calls for further analysis.


1968 ◽  
Vol 90 (4) ◽  
pp. 818-828 ◽  
Author(s):  
S. F. Murray ◽  
M. B. Peterson

This paper is concerned with the sliding contact problems encountered in tilting pad gas bearings operating at temperatures up to 1400 deg F. Both the pivots and the bearing surfaces are considered. Short time experimental evaluations of pivot damage are summarized. The results of start-stop and high-speed rub tests on a single tilting pad hydrodynamic bearing are also described. Based on the results obtained to date, damage-resistant coatings are available for use on the bearing surfaces at high temperature. There are also suitable pivot materials, but the pivot must be properly designed to minimize slip in the contact area.


Author(s):  
Luis San Andre´s ◽  
Keun Ryu

Micro-turbomachinery (MTM) implements gas bearings in compact units of enhanced mechanical reliability. Gas bearings, however, have little damping and wear quickly during transient rub events. Flexure pivot tilting pad bearings offer little or no cross-coupled stiffnesses with enhanced rotordynamic stability; and when modified for hydrostatic pressurization, demonstrate superior rotordynamic performance over other bearing types. External pressurization stiffens gas bearings thus increasing system critical speeds, albeit reducing system damping. Most importantly, measurements demonstrate that external pressurization is not needed for rotor super critical speed operation. In practice, the supply pressure could be shut off at high rotor speeds with substantial gains in efficiency. The paper introduces a simple strategy, employing an inexpensive air pressure regulator to control the supply pressure into the hybrid bearings, to reduce or even eliminate high amplitudes of rotor motion while crossing the system critical speeds. Rotor speed coast-down tests with the pressure controller demonstrate the effectiveness of the proposed approach. A simple on-off supply pressure control, i.e. a sudden increase in pressure while approaching a critical speed, is the best since it changes abruptly the bearing stiffness coefficients and moves the system critical speed to a higher speed. A rotordynamic analysis integrating predicted bearing force coefficients forwards critical speeds in agreement with the test results. Predicted rotor responses for the controlled supply conditions show an excellent correlation with measured data. The experiments validate the predictive tools and demonstrate the controllable rotordynamic characteristics of flexure pivot hybrid gas bearings.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Yang Lihua ◽  
Qi Shemiao ◽  
Yu Lie

Tilting-pad gas bearings are widely used in high-speed rotating machines due to their inherent stability characteristics. This paper advances the analytical method for prediction of the dynamic performances of tilting-pad gas bearings. The main advantage of the analytical method is that the complete set of dynamic coefficients of tilting-pad gas bearings can be obtained. The predictions show that the perturbation frequency has the strong effects on the dynamic coefficients of gas bearings. In general, at lower perturbation frequency, the equivalent direct stiffness coefficients increase with frequency, whereas equivalent direct damping coefficients dramatically reduce. For higher perturbation frequency, the dynamic coefficients are nearly independent of the frequency. Moreover, the equivalent dynamic coefficients of four-pad tilting-pad gas bearing obtained by the method in this paper are in good agreement with those obtained by Zhu and San Andres [(2007), “Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery,” ASME J. Eng. Gas Turbines Power, 129(4), pp. 1020–1027] in the published paper. The results validate the feasibility of the method presented in this paper in calculating the dynamic coefficients of gas-lubricated tilting-pad bearings.


Sign in / Sign up

Export Citation Format

Share Document