Cathodoluminescence spectroscopy studies of laser‐annealed metal–semiconductor interfaces

1985 ◽  
Vol 3 (3) ◽  
pp. 1011-1015 ◽  
Author(s):  
L. J. Brillson ◽  
H. W. Richter ◽  
M. L. Slade ◽  
B. A. Weinstein ◽  
Y. Shapira
1989 ◽  
Vol 148 ◽  
Author(s):  
L. J. Brillson ◽  
R. E. Viturro ◽  
S. Chang ◽  
J. L. Shaw ◽  
C. Mailhiot ◽  
...  

ABSTRACTRecent studies of interface states and band bending at metal / III-V compound semiconductor interfaces reveal that these junctions are much more controllable and predictable than commonly believed. Soft x-ray photoemission spectroscopy studies demonstrate a wide range of band bending for metals on many III-V compounds, including GaAs. Cathodoluminescence spectroscopy measurements show that discrete states form at the microscopic junction which can have a dominant effect on the band bending properties. Internal photoemission measurements confirm the bulk barrier heights inferred by photoemission methods. After separating out surface chemical and bulk crystal quality effects, one finds simple, predictive barrier height variations which follow classical Schottky behavior.


1993 ◽  
Vol 325 ◽  
Author(s):  
R. Enrique Viturro ◽  
John D. Varriano ◽  
Gary W. Wicks

AbstractWe report a cathodoluminescence spectroscopy study of growth-induced deep levels at GaInP epilayers grown by Molecular Beam Epitaxy under various conditions. This approach allows the identification of deep levels which appear to play an important role in the band to band radiative recombination efficiency of these GaInP films. Control of these electronic defects is crucial for the performance of visible optoelectronic devices.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
S. J. Pennycook

Using a high-angle annular detector on a high-resolution STEM it is possible to form incoherent images of a crystal lattice characterized by strong atomic number or Z contrast. Figure 1 shows an epitaxial Ge film on Si(100) grown by oxidation of Ge-implanted Si. The image was obtained using a VG Microscopes' HB501 STEM equipped with an ultrahigh resolution polepiece (Cs ∽1.2 mm, demonstrated probe FWHM intensity ∽0.22 nm). In both crystals the lattice is resolved but that of Ge shows much brighter allowing the interface to be located exactly and interface steps to be resolved (arrowed). The interface was indistinguishable in the phase-contrast STEM image from the same region, and even at higher resolution the location of the interface is complex. Figure 2 shows a thin region of an MBE-grown ultrathin super-lattice (Si8Ge2)100. The expected compositional modulation would show as one bright row of dots from the 2 Ge monolayers separated by 4 rows of lighter Si columns. The image shows clearly that strain-induced interdiffusion has occurred on the monolayer scale.


Sign in / Sign up

Export Citation Format

Share Document