Circular polarized incident light scattering properties at optical clearing in tissues

2016 ◽  
Author(s):  
Dongsheng Chen ◽  
Nan Zeng ◽  
Yunfei Wang ◽  
Honghui He ◽  
Valery V. Tuchin ◽  
...  
Author(s):  
Chris W. Drew ◽  
Christopher G. Rylander

The highly disordered refractive index distribution in biological tissue causes multiple-scattering of incident light and inhibits optical penetration depth. “Tissue optical clearing” increases penetration depth of near-collimated light in biological tissue, potentially resulting in improved optical analysis and treatment techniques. Numerous methods of tissue optical clearing have been hypothesized using hyperosmostic agents [1]. These methods propose reduction in light scattering by means of dehydration of tissue constituents, replacement of interstitial or intracellular water with higher refractive agents, or structural modification or dissociation of collagen fibers [2,3]. It has been suggested that dehydration of tissue constituents alone can reduce light scattering by expulsing water between collagen fibrils, increasing protein and sugar concentrations, and decreasing refractive index mismatch [4].


1995 ◽  
Vol 60 (11) ◽  
pp. 1875-1887 ◽  
Author(s):  
Jaroslav Holoubek ◽  
Miroslav Raab

Theoretical background for an optical method is presented which makes it possible to distinguish unambiguously between voids and particles as light scattering sites in polymeric materials. Typical dependences of turbidity as a function of diameter of scattering elements, their volume fractions and also turbidity curves as a function of the wavelength of the incident light were calculated, based both on the Lorenz-Mie theory and the fluctuation theory. Such dependences calculated for polypropylene-containing voids on the one hand and particles, differing only slightly from the surrounding matrix in their refractive index, on the other hand, are markedly different. The most significant results are: (i) Turbidity is at least by two orders of magnitude larger for voids in comparison to embedded particles of ethylene-propylene (EPDM) rubber of the same size, concentration and at the same wavelength. (ii) The wavelength dependence of turbidity for EPDM particles and the inherent refractive index fluctuations in the polypropylene matrix is much steeper as compared to voids for all considered diameters (0.1-10 μm). Thus, the nature of stress whitening in complex polymeric materials can be determined from turbidity measurements.


2022 ◽  
Author(s):  
Atefeh Fazel Najafabadi ◽  
Baptiste Auguié

The optical properties of nanoparticle clusters vary with the spatial arrangement of the constituent particles, but also the overall orientation of the cluster with respect to the incident light. This...


1977 ◽  
Vol 1977 (1) ◽  
pp. 153-156 ◽  
Author(s):  
Bruce Friedman

ABSTRACT Light scattering techniques are used in several oil-in-water monitors, proposed or in existence. Particulate matter which may interfere with these monitors is also frequently found in oily wastes. An analysis is made of the potential of using measurements of the angular intensity distribution of scattered light in conjunction with determination of the state of polarization of the scattered light for discriminating between oil and particulates. The size conditions which apply to the oil droplets and particulates relative to the incident light allow the scattered light angular intensity distribution to be treated as a consequence of a combination of classical diffraction and of geometrical refraction and reflection. The state of polarization of the scattered light for oil droplets is investigated using expressions for the electric field which are approximations to the expressions of the Mie theory. For the particulate matter, the state of polarization is probed on the basis of light reflected from a plane. It is found that it would be difficult to discriminate between oil and particulates using measurements of the angular intensity distribution of scattered light even in conjunction with the determination of the state of polarization of the scattered light in a real life situation.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Olga Zhernovaya ◽  
Valery V. Tuchin ◽  
Martin J. Leahy

AbstractThe results of a feasibility study of the application of PEG-300 and fructose as two independent optical clearing agents for the reduction of light scattering in biological tissues are presented.An OCT system operating at 1300 nm was used to study optical clearing effects. InThe intradermal injection of fructose in combination with the intravenous injection of PEG-300 led to a rapid optical clearing effect. In the experiments on miceThe experiments on mice have clearly demonstrated that intradermal and intravenous injections of optical clearing agents enhanced light transport through the skin and blood vessels.


2019 ◽  
Vol 127 (8) ◽  
pp. 329
Author(s):  
К.В. Березин ◽  
К.Н. Дворецкий ◽  
М.Л. Чернавина ◽  
В.В. Нечаев ◽  
А.М. Лихтер ◽  
...  

AbstractWe present the results of in vivo optical immersion clearing of human skin by aqueous solutions of some immersion agents (ribose, glucose, and fructose monosaccharides and glycerol), obtained using optical coherence tomography (OCT). To assess the efficiency of optical clearing, we determined the values of the rate of change of the light scattering coefficient, obtained using the averaged A-scan of the OCT signal in the derma section at a depth of 350–700 μm. A good correlation was observed between the rate of change of the light scattering coefficient and the potential of the optical clearing. Using complex molecular simulation of the interaction of a number of immersion clearing agents with collagen mimetic peptide (GPH)_3 using classical molecular dynamics and quantum chemistry, we found correlations between the efficiency of optical clearing and the energy of intermolecular interaction of cleaning agents with a fragment of collagen peptide.


Author(s):  
Chris W. Drew ◽  
Alondra Izquierdo-Roman ◽  
Yajing Liu ◽  
Christopher G. Rylander

The complex morphological structure of skin with its variations in the indices of refraction of components therein provides a highly scattering medium for visible and near-infrared wavelengths of light. “Tissue optical clearing” increases transmission of near-collimated light in biological tissue, potentially enabling improved optical analysis and treatment techniques. Numerous methods of tissue optical clearing have been hypothesized using hyperosmostic agents [1]. These methods propose reduction in light scattering by means of dehydration of tissue constituents, replacement of interstitial or intracellular water with higher refractive agents, or structural modification or dissociation of collagen fibers [2]. It has been suggested that dehydration of tissue constituents alone can reduce light scattering by expulsing water between collagen fibrils, increasing protein and sugar concentrations, and decreasing refractive index mismatch [3].


Sign in / Sign up

Export Citation Format

Share Document