High-performance optical modulator using ultra-thin silicon waveguide in SOI technology

Author(s):  
Ahmad B. Ayoub ◽  
Mohamed A. Swillam
2021 ◽  
Author(s):  
Ahmed B. Ayoub ◽  
Mohamed Swillam

Abstract We propose a detailed study of an on-chip optical modulator using a non-conventional silicon-based platform. This platform is based on the optimum design of ultra-thin silicon on insulator (SOI) waveguide. This platform is characterized by low field confinement inside the core waveguide and high sensitivity to the cladding index. Accordingly, it lends itself to a wide range of applications, such as sensing and optical modulation. By employing this waveguide into the Mach-Zehnder interferometer (MZI) configuration, an efficient optical modulator is reported using an organic polymer as an active material for the electro-optic effect. An extinction ratio of more than 20 dB is achieved with energy per bit of 13.21 fJ/bit for 0.5 V applied voltage. This studied platform shows promising and adequate performance for modulation applications. It is cheap and easy to fabricate.


1993 ◽  
Vol 316 ◽  
Author(s):  
H. H. Hosack

Silicon-On-Insulator (SOI) technology [1-4] has been shown to have significant performance and fabrication advantages over conventional bulk processing for a wide variety of large scale CMOS IC applications. Advantages in radiation environments has generated significant interest in this technology from military and space science communities [5,6]. Possible advantages of SOI technology for low power, low voltage and high performance circuit applications is under serious consideration by several commercial IC manufacturers [7,8].


1997 ◽  
Vol 469 ◽  
Author(s):  
Guénolé C.M. Silvestre

ABSTRACTSilicon-On-Insulator (SOI) materials have emerged as a very promising technology for the fabrication of high performance integrated circuits since they offer significant improvement to device performance. Thin silicon layers of good crystalline quality are now widely available on buried oxide layers of various thicknesses with good insulating properties. However, the SOI structure is quite different from that of bulk silicon. This paper will discuss a study of point-defect diffusion and recombination in thin silicon layers during high temperature annealing treatment through the investigation of stacking-fault growth kinetics. The use of capping layers such as nitride, thin thermal oxide and thick deposited oxide outlines the diffusion mechanisms of interstitials in the SOI structure. It also shows that the buried oxide layer is a very good barrier to the diffusion of point defects and that excess silicon interstitials may be reincorporated at the top interface with the thermal oxide through the formation of SiO species. Finally, from the experimental values of the activation energies for the growth and the shrinkage of stacking-faults, the energy of interstitial creation is evaluated to be 2.6 eV, the energy for interstitial migration to be 1.8 eV and the energy of interstitial generation during oxidation to be 0.2 eV.


Author(s):  
Bertrand Pelloux-Prayer ◽  
Milovan Blagojevic ◽  
Olivier Thomas ◽  
Amara Amara ◽  
Andrei Vladimirescu ◽  
...  

Author(s):  
M. Khare ◽  
S.H. Ku ◽  
R.A. Donaton ◽  
S. Greco ◽  
C. Brodsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document