Analysis of winter wheat recognition ability based on multiphase Sentinel-2A data

Author(s):  
Fanchen Peng ◽  
Wenting Cai ◽  
Zhaohua Zhang ◽  
Shuhe Zhao ◽  
Yamei Wang
2017 ◽  
Vol 3 (2) ◽  
pp. 163-186 ◽  
Author(s):  
Sergii Skakun ◽  
◽  
Eric Vermote ◽  
Jean-Claude Roger ◽  
Belen Franch ◽  
...  

Author(s):  
Galina Zholobak ◽  
Oksana Sybirtseva ◽  
Mariana Vakolyuk ◽  
Inna Romanciuc

Dynamics of 15 vegetation indices estimated from the Sentinel-2A images within two test sites with the area of 1 ha for the production crops of two winter wheat cultivars (Bohdana and Skagen) are analyzed for winter dormancy and spring-early summer in 2016. The decrease of total nitrogen content in dry matter of the plant organs, which are formed the reflecting surface of the vegetation cover from the booting stage to milk one is consistent with the behavior of the Green NDVI (740, 560) for the both test sites of winter wheat cover. Dynamics of the other 14 indices have been analyzed under the conditions of the deterioration of phytosanitary situation for the winter wheat crop of Bohdana cultivar.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1485 ◽  
Author(s):  
Suming Zhang ◽  
Gengxing Zhao ◽  
Kun Lang ◽  
Baowei Su ◽  
Xiaona Chen ◽  
...  

Chlorophyll is the most important component of crop photosynthesis, and the reviving stage is an important period during the rapid growth of winter wheat. Therefore, rapid and precise monitoring of chlorophyll content in winter wheat during the reviving stage is of great significance. The satellite-UAV-ground integrated inversion method is an innovative solution. In this study, the core region of the Yellow River Delta (YRD) is used as a study area. Ground measurements data, UAV multispectral and Sentinel-2A multispectral imagery are used as data sources. First, representative plots in the Hekou District were selected as the core test area, and 140 ground sampling points were selected. Based on the measured SPAD values and UAV multispectral images, UAV-based SPAD inversion models were constructed, and the most accurate model was selected. Second, by comparing satellite and UAV imagery, a reflectance correction for satellite imagery was performed. Finally, based on the UAV-based inversion model and satellite imagery after reflectance correction, the inversion results for SPAD values in multi-scale were obtained. The results showed that green, red, red-edge and near-infrared bands were significantly correlated with SPAD values. The modeling precisions of the best inversion model are R2 = 0.926, Root Mean Squared Error (RMSE) = 0.63 and Mean Absolute Error (MAE) = 0.92, and the verification precisions are R2 = 0.934, RMSE = 0.78 and MAE = 0.87. The Sentinel-2A imagery after the reflectance correction has a pronounced inversion effect; the SPAD values in the study area were concentrated between 40 and 60, showing an increasing trend from the eastern coast to the southwest and west, with obvious spatial differences. This study synthesizes the advantages of satellite, UAV and ground methods, and the proposed satellite-UAV-ground integrated inversion method has important implications for real-time, rapid and precision SPAD values collected on multiple scales.


Author(s):  
Galina Zholobak ◽  
Oksana Sybirtseva ◽  
Mariana Vakolyuk ◽  
Yuliia Zakharchyk

The spectral vegetation indices NDVI (842, 665), NDVI (740, 665) and GreenNDVI received from the survey data of new generation satellite Sentinel2A, were analyzed in publication for studying the vegetation of two cultivars of winter wheat, grown up of crops production for the harvest in 2016 year of Grain Alliance Ukraine (Berezan, Kyiv oblast, Ukraine).


2020 ◽  
Vol 12 (8) ◽  
pp. 1274 ◽  
Author(s):  
Qi Dong ◽  
Xuehong Chen ◽  
Jin Chen ◽  
Chishan Zhang ◽  
Licong Liu ◽  
...  

Accurate mapping of winter wheat over a large area is of great significance for guiding policy formulation related to food security, farmland management, and the international food trade. Due to the complex phenological features of winter wheat, the cloud contamination in time-series imagery, and the influence of the soil/snow background on vegetation indices, there remains no effective method for mapping winter wheat at a medium spatial resolution (10–30 m). In this study, we proposed a novel method called phenology-time weighted dynamic time warping (PT-DTW) for identifying winter wheat based on Sentinel 2A/B time-series data. The main advantages of PT-DTW include (1) the use of phenological features in two periods, i.e., the greenness increase before winter and greenness decrease after heading, which are common to all winter wheat and are distinct from the features of other land cover types, and (2) the use of the normalized differential phenology index (NDPI) instead of traditional vegetation indices to provide more robust vegetation information and to suppress the adverse impacts of soil and snow cover, especially during the before-winter growth period. The proposed PT-DTW method was employed for winter wheat mapping based on Sentinel 2A/B data on the Huang-Huai Plain, China. Validation with visually interpreted samples showed that the produced winter wheat map achieved an overall classification accuracy of 89.98% and a kappa coefficient of 0.7978, outperforming previous winter wheat classification methods. Moreover, the planting area derived from PT-DTW agreed well with census data at the municipal level, with a coefficient of determination of 0.8638, indicating that the winter wheat map produced at 20 m resolution was reliable overall. Therefore, the PT-DTW method is recommended for winter wheat mapping over large areas.


1994 ◽  
Vol 92 (3) ◽  
pp. 511-515 ◽  
Author(s):  
Kang Chong ◽  
Li-Ping Wang ◽  
Ke-Hui Tan ◽  
Hua-Liang Huang ◽  
Hou-Guo Liang

Agronomie ◽  
1983 ◽  
Vol 3 (6) ◽  
pp. 537-544 ◽  
Author(s):  
Jean-François LEDENT ◽  
Volkmar STOY ◽  
Helena AIRAKSINEN ◽  
Tomas PATKAI

Author(s):  
Georgiy Gulyuk ◽  
Aleksey Ivanov ◽  
Yuri Yanko

Current situation and agricultural management on the non-black earth area of Russia arebeing gradually worsen by the negative natural factors such as a significant increase of weather based climatic abnormal risks, deterioration of agro-meliorative conditions of agricultural lands because of colonization by tree and shrubbery vegetation and secondary bog formation, hidden degradation of soil fertility. When combined with functional loss of ameliorative complex and meliorative systems amortization, regional agriculture adaptation possibilities were rapidly limited. Production shortfall due no abnormal weather conditions for particular field crops was 19…48% during last five years, level of business realization of bioclimatic potential on a field was decreased by 7…12%.The complete realization of regional agricultural adaptive potential to weather based climatic changes and limitation of greenhouse gases emissions is possible on a basis of regeneration ofalll functions and aspects of ameliorative complex management. Toward this goal the coordinated actions of federal and regional management of Agricultural Complex, Scientific and Educational institutions, project foundations and managers are needed in a relation to human resources, scientific and regulatory supply. Any incomplete treatment in these fields inherent in visual negative consequences for food security and social economic development of rural areas of non-black earth zones not only at the current historical moment, but in a future also. Fundamental influence of solving of these problems deserves to scientific supply of innovative ameliorative complex, renewal of which should be based on principals of resources and energy preservation, nature management, computerization and digitalization management. During a long term research it was established that increase of average vegetation period temperature by lоСhas increased productivity of winter wheat, barley and summer wheat in average on 0,7 tons per ha, winter wheat and oat on 0,4 tons per ha, potatoes – 8,2 tons per ha, edible roots-6,4 tons per ha, cabbage 9,8 tons per ha, dry basis of herbage of multi and one age grasses–0,5 and 0,7 tons per ha. Increase of СО2 Concentration from 0,35 to 0,45% during last twenty years contributed into grow of yield in regional agriculture which can be estimated as 0,3 tons per ha per measure; searching remedy for agroclimatical risks decreasing production became drainage and irrigation systems (decrease 3…5 times);new method of reclamation of abandoned areas with transformation of biomass of tree and shrubbery vegetation into biochar makes it possible to decrease СО2 emissions up to times and get an adverse balance of СО2;secondary reclamation of lands covered by trees and shrubbery on area of 22ha used for vegetables and area of 37ha used for forage crops could supply a farmer with work and revenue sufficient for maintenance of one child what is on the major facts of population declaim in rural areas.


2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


Sign in / Sign up

Export Citation Format

Share Document