Simulation of the impact of a liquid jet upon contact with a perpendicular surface versus an inclined one

Author(s):  
Claudiu Picus ◽  
Ioan Mihai ◽  
Ioan-Cozmin Manolache-Rusu
Keyword(s):  
Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari

Abstract This paper presents the experimental analysis of the impact of swirl number of cross-flowing air stream on liquid jet spray trajectory at a fixed air flow velocity of 42 m/s with the corresponding Mach number of 0.12. The experiments were conducted for 4 different swirl numbers (0, 0.2, 0.42 and 0.73) using swirl vanes at air inlet having angles of 0°, 15°, 30° and 45° respectively. Liquid to air momentum flux ratio (q) was varied from 5 to 25. High speed (@ 500 fps) images of the spray were captured and those images were processed using MATLAB to obtain the path of the spray at various momentum flux ratios. The results show interesting trends for the spray trajectory and the jet spread in swirling air flow. High swirling flows not only lead to spray with lower radial penetration due to sharp bending and disintegration of liquid jet, but also result in spray with high jet spread and spray area. Based on the results, correlations for the spray path have been proposed which incorporates the effects of the swirl number of the air flow.


Author(s):  
Zhan Yi ◽  
Naoki Oya ◽  
Koji Enoki ◽  
Tomio Okawa ◽  
Shuji Ohno ◽  
...  

A liquid jet is of considerable importance in many industrial fields including jet cleaning, jet engine and combustion. As an important example, the Monju nuclear power plant in Japan experienced a sodium leak in 1995. This led to a fire accident because the sodium reacted with oxygen in the air. To predict the significance of the fire accident, accurate evaluation of the amount of splashed droplets caused by the sodium jet impingement is of great importance. In this work, the relationship between the condition of a liquid jet and the amount of splashed droplets is explored experimentally. In the experiments, a liquid jet was emanated vertically downward from a circular nozzle onto a liquid film formed on a horizontal plate. Visualization using a high speed camera was performed to observe the condition of the liquid jet. From the nozzle, the mode of the liquid jet changed jet, lump and drop. Here, the jet mode means the continuous jet with smooth surface, the lump mode the continuous jet with disturbed surface and the drop mode the broken jet. Dependences of the transition length to each mode on the important parameters such as the jet velocity and the nozzle diameter were investigated. Measurement was also conducted for the splash ratio that is defined as the ratio of the amount of splashed droplets to the jet flow rate. It was found that the splash ratio is high when the liquid jet is in the drop mode at the impact point. It was shown that the splash ratio can be correlated well as a function of the impact Weber number and the Strouhal number of the droplets impinging the liquid film.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Prachya Mukda ◽  
Kulachate Pianthong ◽  
Wirapan Seehanam

Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.


1994 ◽  
Vol 116 (2) ◽  
pp. 345-348 ◽  
Author(s):  
H. H. Shi ◽  
J. E. Field ◽  
C. S. J. Pickles

The mechanics of impact by a high-speed liquid jet onto a solid surface covered by a liquid layer is described. After the liquid jet contacts the liquid layer, a shock wave is generated, which moves toward the solid surface. The shock wave is followed by the liquid jet penetrating through the layer. The influence of the liquid layer on the side jetting and stress waves is studied. Damage sites on soda-lime glass, PMMA (polymethylmethacrylate) and aluminium show the role of shear failure and cracking and provide evidence for analyzing the impact pressure on the wetted solids and the spatial pressure distribution. The liquid layer reduces the high edge impact pressures, which occur on dry targets. On wetted targets, the pressure is distributed more uniformly. Despite the cushioning effect of liquid layers, in some cases, a liquid can enhance material damage during impact due to penetration and stressing of surface cracks.


A study has been made of the deformation of solids at high rates of strain which are produced by the impact of a small cylinder or jet of liquid on the surface of the solid. A method is developed for projecting this jet against the solid at velocities up to 1200 m/s. The subsequent deformation of the solid under impact and the behaviour of the liquid is observed by high-speed photographic methods. The magnitude and duration of the impact load are also measured by using a piezo-electric transducer. The mode of deformation of the solid has been investigated for plastic, elastic and brittle materials. There is evidence that the liquid jet, on impact, behaves initially in a compressible manner. Part of the deformation is due to these compressible effects and part to the shearing action of the liquid flowing at very high speeds across the surface. If the head of the jet has an appropriate shape (e.g. wedge shaped) the velocity of flow across the surface may be much greater than the velocity of approach. It is found that there are five general types of deformation produced in the solid. There are (i) circumferential surface fractures, (ii) subsurface flow and fractures, (iii) large-scale plastic deformation, (iv) shear deformation around the periphery of the impact zone, and (v) fracture due to the reflexion and interference of stress waves. The predominating mode of deformation depends primarily on the mechanical properties of the solid and on the velocity of impact. The observations have a bearing on the practical problem of the erosion of aircraft flying at high speed through rain and on the erosion of turbine blades.


Author(s):  
Sheng Li ◽  
Utsav Parmar

In this work, the impact of the surface micro-dimple arrays on the frictional behavior under the mixed elastohydrodynamic lubrication condition is examined, considering a point contact problem. The interested geometric parameters of the micro-dimple arrays include the dimple center distance and the dimple depth. To quantify the influence of these parameters on the friction coefficient, a computational approach is implemented. In addition, different surface texture combinations, namely micro-dimpled and polished surface versus polished surface, polished surface versus polished surface and ground surface versus ground surface, are compared to determine any advantage or disadvantage of micro-dimpled surfaces on the aspect of the friction performance under the typical gearing application operating conditions.


1999 ◽  
Vol 380 ◽  
pp. 339-361 ◽  
Author(s):  
R. P. TONG ◽  
W. P. SCHIFFERS ◽  
S. J. SHAW ◽  
J. R. BLAKE ◽  
D. C. EMMONY

Vapour cavities in liquid flows have long been associated with cavitation damage to nearby solid surfaces and it is thought that the final stage of collapse, when a high- speed liquid jet threads the cavity, plays a vital role in this process. The present study investigates this aspect of the motion of laser-generated cavities in a quiescent liquid when the distance (or stand-off) of the point of inception from a rigid boundary is between 0.8 and 1.2 times the maximum radius of the cavity. Numerical simulations using a boundary integral method with an incompressible liquid impact model provide a framework for the interpretation of the experimental results. It is observed that, within the given interval of the stand-off parameter, the peak pressures measured on the boundary at the first collapse of a cavity attain a local minimum, while at the same time there is an increase in the duration of the pressure pulse. This contrasts with a monotonic increase in the peak pressures as the stand-off is reduced, when the cavity inception point is outside the stated interval. This phenomenon is shown to be due to a splash effect which follows the impact of the liquid jet. Three cases are chosen to typify the splash interaction with the free surface of the collapsing cavity: (i) surface reconnection around the liquid jet; (ii) splash impact at the base of the liquid jet; (iii) thin film splash. Hydrodynamic pressures generated following splash impact are found to be much greater than those produced by the jet impact. The combination of splash impact and the emission of shock waves, together with the subsequent re-expansion, drives the flow around the toroidal cavity producing a distinctive double pressure peak.


1974 ◽  
Vol 96 (3) ◽  
pp. 216-226 ◽  
Author(s):  
R. G. Cunningham ◽  
R. J. Dopkin

Gas compression with a liquid jet occurs isothermally and hence with minimum work. Performance characteristics of the liquid jet gas pump (efficiency and compression ratio versus inlet volumetric flow ratio) are predicted accurately by a one-dimensional analysis providing the mixing zone remains in the throat. Jet breakup was investigated to enable prediction of required throat length and to improve efficiency. Effects of throat length, nozzle contour and spacing, nozzle-throat area ratio (0.15 to 0.45), jet velocity and suction pressure were investigated. Optimum throat lengths were found; corresponding efficiencies exceed 40 percent. Two jet breakup flow regimes were found: impact and jet disintegration. For the impact regime, jet breakup length-depends on inlet velocity ratio, jet Reynolds number and nozzle-to-throat area ratio. Optimum throat lengths were found to be an empirical function of nozzle-to-throat area ratio and ranged from 12 to 32 throat dia. These results, coupled with the one-dimensional model, permit design of efficient liquid jet gas pumps.


Sign in / Sign up

Export Citation Format

Share Document