Design of thermo-mechanical properties of highly reliable, UV-curable optical polymers

Author(s):  
Patrick Heissler ◽  
Markus Brehm ◽  
Isabel Pilottek ◽  
Martin Bues
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1424
Author(s):  
Mariola Robakowska ◽  
Łukasz Gierz ◽  
Hubert Gojzewski

This article describes the modification of UV-curable coatings with silicon aluminum oxynitride (Sialon) and aluminum oxide (Alu C), which improve the hydrophobicity of the coating surface and the scratch hardness. The contact angle is greater due to surface roughness being enhanced with inorganic fillers. Improved scratch resistance results from the formation of a sliding layer triggered by the diffusion of Sialon or alumina on the coating surface. One can observed an increase in the surface hydrophobicity as well as in the scratch hardness (up to 100%) when small amounts (5 wt.%) of the inorganic compounds are added. Imaging microscopies, i.e., SEM, OM, and AFM (with nanoscopic Young’s modulus determination), revealed the good distribution of both types of fillers in the studied matrix.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emrah Uysal ◽  
Mustafa Çakir ◽  
Bülent Ekici

Purpose Traditional nanocomposite production methods such as in situ polymerization, melt blending and solvent technique, have some deficits. Some of these are non-homogeneous particle distribution, setup difficulties, time-consuming and costly. On the other hand, three-dimensional printing technology is a quite popular method. Especially, Stereolithography (SLA) printing offers some benefits such as fast printing, easy setup and smooth surface specialties. Furthermore, surface modification of Graphene Oxide (GO) and its effects on polymer nanocomposites are quite important. The purpose of this study is to examine the effect of surface modification of GO nanoparticles on the mechanical properties and morphology of epoxy acrylate (BisGMA/1,6 hexane diol diacrylate) matrix nanocomposites. Design/methodology/approach In this study, Ultraviolet (UV) curable end groups of synthesized resin were linked to functional groups of graphene oxide, which are synthesized by the Tour method, which is a kind of modified Hummer method. In addition, synthesized GO nanoparticle’s surfaces were modified by 3-(methacryloyloxy) propyl trimethoxysilane. Significant weight percentages of GO were added into the epoxy acrylate resin. Different Wt.% of modified graphene oxide/acrylate resins was used to print test specimens with SLA type three-dimensional printer. Findings Surface modification has a significant effect on tensile strength for graphene oxide nanoparticles contained composites. In addition, a specific trend was not observed for tensile test results of non-modified graphene oxide. The tendency of impact and hardness test finding were similar for both surfaces modified and non-modified nanoparticles. Finally, the distribution of particles was homogeneous. Originality/value This paper is unique because of the inclusion of both surface modifications of graphene oxide nanoparticles and SLA production of nanocomposites with its own production of three-dimensional printer and photocurable polymer resin.


2014 ◽  
Vol 43 (4) ◽  
pp. 177-184 ◽  
Author(s):  
Pooneh Kardar ◽  
Morteza Ebrahimi ◽  
Saeed Bastani

Purpose – The purpose of this work was to study the effect of chemical structure of reactive diluents on the curing behaviour and physical–mechanical properties of a titanium dioxide pigmented UV-curable epoxy acrylate system. Design/methodology/approach – Two different tri-functional and two different tetra-functional acrylate monomers were used as reactive diluents in the formulations. The curing behaviour of the formulations was studied by using photo-differential scanning calorimetry analysis. The rate of curing, conversion at the maximum rate and ultimate conversion for different formulations were calculated. In addition, the physical and mechanical characteristics of the cured films, including glass transition temperature and modulus, were measured by using a dynamic mechanical analysis technique. Findings – The results showed that the ultimate conversion for non-pigmented pentaerythritol triacrylate (PETA) and trimethylol propane triacrylate (TMPTA) formulations were almost similar, but the interference effect of titanium dioxide particles on the curing of the PETA formulations was found to be more considerable in comparison to the TMPTA formulations. The extent of reaction for tetra-functional acrylate monomers was considerably less than those for tri-functional acrylate monomers. The Tg and storage modulus of non-pigmented PETA, TMPTA and pentaerythritol tetraacrylate (PE4TA) formulations were almost the same and higher than that for ditrimethylol propane tetraacrylate (DiTMP4TA) formulations. However, Tg and storage modulus of pigmented tetra-functional acrylate monomer formulations were higher than those for tri-acrylate monomer formulations. Research limitations/implications – The curing conditions (temperature and UV intensity) can affect the network formation and consequently will affect on the properties of the cured films. Practical implications – The pigmented UV-curable coatings are interested for many industries such as wood and automotive industries. The reported data can be used by the formulators working in the R&D departments. In addition, the results obtained can be used by the researchers who are active in the field of structure–property relationship for UV-curable coatings. Social implications – UV-curing systems are considered as one of the most environment-friendly coatings system. Therefore, the developing of its knowledge can help to extend its usage to different applications. Originality/value – The photopolymerisation of pigmented coatings is a great challenge and is hardly investigated in the literature. Therefore, in this research, the effect of chemical structure and functionality of different multifunctional acrylate monomers on the curing behaviour of pigmented formulations was investigated.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 439 ◽  
Author(s):  
Jiajia Wen ◽  
Chengchen Feng ◽  
Huijie Li ◽  
Xinghai Liu ◽  
Fuyuan Ding ◽  
...  

Polyurethane acrylates (PUAs) are a kind of UV curable prepolymer with excellent comprehensive performance. However, PUAs are highly hydrophilic and when applied outdoors, presenting serious problems caused by rain such as discoloring, losing luster and blistering. Thus, it’s important to improve their hydrophobicity and resistance against corrosion. In this paper, carbon microspheres (CMSs) were modified through chemical grafting method. Active double bonds were introduced onto the surface of organic carbon microspheres (OCMSs) and the functional product was referred to as FCMS. The results of Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric analysis (TGA) showed that organic chain segments were successfully connected to the surface of OCMSs and the grafting efficiency was as high as 16%. FCMSs were successfully added into UV-curable polyurethane acrylate prepolymer to achieve a hydrophobic coating layer with good mechanical properties, thermal stability and corrosion resistance. When the addition of FCMSs were 1%, thermogravimetric analysis (TGA) results showed that 5% of the initial mass was lost at 297 °C. The water absorption decreased from 52% to 38% and the water contact angle of the PUA composite increased from 72° to 106°. The pencil hardness increased to 4H and obvious crack termination phenomenon was observed in SEM images. Moreover, the corrosion rate was decreased from 0.124 to 0.076 mm/a.


Sign in / Sign up

Export Citation Format

Share Document