Accurate evaluation of Cr/n-Si Schottky barrier height using thermionic emission theory and external resistors

Author(s):  
Zih-Chun Su ◽  
Ching-Fuh Lin
2011 ◽  
Vol 1406 ◽  
Author(s):  
Cleber A. Amorim ◽  
Olivia M. Berengue ◽  
Luana Araújo ◽  
Edson R. Leite ◽  
Adenilson J. Chiquito

ABSTRACTIn this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.


2016 ◽  
Vol 7 ◽  
pp. 1800-1814 ◽  
Author(s):  
Ivan Shtepliuk ◽  
Jens Eriksson ◽  
Volodymyr Khranovskyy ◽  
Tihomir Iakimov ◽  
Anita Lloyd Spetz ◽  
...  

A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.


2009 ◽  
Vol 23 (05) ◽  
pp. 765-771
Author(s):  
H. ESHGHI ◽  
M. MOHAMMADI

In this paper, the effect of porosity on reverse bias current–voltage characteristics of PtSi/por - Si (p-type) IR detector as a function of temperature is investigated. Our experimental data for two samples with different porosities (50% and 10%) at 300 K and 77 K are reported by Raissi et al.1 These data indicates a breakdown-like behavior. Our analytical model is based on hole thermionic emission with large ideality factor (n ≈ 200). Our calculations show that at each temperature, the Schottky barrier height, as well as the ideality factor, in sample with 10% porosity is bigger than that of 50%. These variations could be due to band gap variations of Si size effect using quantum dot model, and the presence of the relatively high (~1015 cm-2 eV-1) density of states at the silicide/por-silicon interface, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2011 ◽  
Vol 98 (16) ◽  
pp. 162111 ◽  
Author(s):  
J. Kováč ◽  
R. Šramatý ◽  
A. Chvála ◽  
H. Sibboni ◽  
E. Morvan ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 597-599 ◽  
Author(s):  
Lin-Lin Wang ◽  
Wu Peng ◽  
Yu-Long Jiang ◽  
Bing-Zong Li

2007 ◽  
Vol 994 ◽  
Author(s):  
S. L. Liew ◽  
C. T. Chua ◽  
D. H. L Seng ◽  
D. Z. Chi

AbstractSchottky barrier height (ÖB) engineering of NiGe/n-Ge(001) diodes was achieved through germanidation induced dopant segregation on As implanted-Ge substrates. was reduced from 0.55 eV to 0.16 eV with increasing As dose on n-Ge(001) while on p-Ge(001), the diodes exhibited increasing ÖB.


Sign in / Sign up

Export Citation Format

Share Document