Micro-deformation measurement using focused ion beam moire method

2003 ◽  
Author(s):  
Huimin Xie ◽  
Biao Li ◽  
Robert E. Geer ◽  
Bai Xu ◽  
James Castracane ◽  
...  
2011 ◽  
Vol 83 ◽  
pp. 185-190 ◽  
Author(s):  
Qing Hua Wang ◽  
Hui Min Xie ◽  
Zhen Xing Hu ◽  
Jing Zhang ◽  
Jun Sun ◽  
...  

The thermo-creep deformation of interconnects related to the residual stress, directly affects their performance and lifetime. In this paper, we proposed an optical method to measure the residual thermo-creep deformation of copper interconnects. This method takes advantages of grating fabrication and the phase-shifting scanning electron microscope (SEM) moiré method. The residual thermo-creep deformation can be acquired through deformation transformation. A one-way grating with frequency of 5000 lines/mm is fabricated on the surface of the copper line in a focused ion-beam (FIB) system. The principal direction of the grating is along the axis of the copper line. The sample is heated in a high temperature furnace under 90 °C for 70 min. The SEM moiré patterns before and after heating are recorded by a field emission SEM in low vacuum. Through the random phase-shifting algorithm, the residual thermo-creep deformation of the copper interconnect line is found to be 500 με. The cause of the tensile strain is analyzed. This work offers an effective technique for measuring the creep deformation of the film lines.


2003 ◽  
Vol 40 (3) ◽  
pp. 163-177 ◽  
Author(s):  
Huimin Xie ◽  
Biao Li ◽  
Robert Geer ◽  
Bai Xu ◽  
James Castracane

2000 ◽  
Vol 34 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Satoshi Kishimoto ◽  
Xie Huimin ◽  
Norio Shinya

2003 ◽  
Vol 74 (1) ◽  
pp. 256-259 ◽  
Author(s):  
Huimin Xie ◽  
Haixia Shang ◽  
Biao Li ◽  
Fulong Dai

2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Sign in / Sign up

Export Citation Format

Share Document