Negative-stiffness-mechanism vibration isolation systems

Author(s):  
David L. Platus
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mhia Md Zaglul Shahadat ◽  
Takeshi Mizuno ◽  
Masaya Takasaki ◽  
Fazlur Rashid ◽  
Yuji Ishino

This paper presents the isolation of vibration through the acceleration feedback of the Kalman filter. In this paper, vibration isolation was analyzed both analytically and experimentally through the estimation of the Kalman filter (KF). A negative stiffness mechanism was used to reduce the level of vibration for the developed dynamic system. The technique of negative stiffness can provide stiffness of infinite level to low stiffness as well as disturbance generated by the ground vibration directly. The performance of an isolation system through a mechanism of negative stiffness was improved by the addition of acceleration feedback. Acceleration was measured using a microelectromechanical (MEMS) type accelerometer instead of traditional servo type accelerometers due to lower cost. However, the output of a microelectromechanical (MEMS) type accelerometer is usually noisy. To avoid this difficulty, an acceleration that was estimated by a Kalman filter was considered in the acceleration feedback instead of directly measured acceleration. The dynamic behaviors of the system were compared for both the Kalman-filtered acceleration and the directly measured acceleration feedback. It is observed that the former has a significant effect on the improvement of the characteristics of the vibration isolation systems than later.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yuhu Shan ◽  
Wenjiang Wu ◽  
Xuedong Chen

In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.


2021 ◽  
Vol 11 (23) ◽  
pp. 11539
Author(s):  
Cong Hung Nguyen ◽  
Cong Minh Ho ◽  
Kyoung Kwan Ahn

This research introduces an air spring vibration isolator system (ASVIS) based on a negative-stiffness structure (NSS) to improve the vehicle seat’s vibration isolation performance at low excitation frequencies. The main feature of the ASVIS consists of two symmetric bellows-type air springs which were designed on the basis of a negative stiffness mechanism. In addition, a crisscross structure with two straight bars was also used as the supporting legs to provide the nonlinear characteristics with NSS. Moreover, instead of using a vertical mechanical spring, a sleeve-type air spring was employed to provide positive stiffness. As a result, as the weight of the driver varies, the dynamic stiffness of the ASVIS can be easily adjusted and controlled. Next, the effects of the dimension parameters on the nonlinear force and nonlinear stiffness of ASVIS were analyzed. A design process for the ASVIS is provided based on the analytical results in order to achieve high static–low dynamic stiffness. Finally, numerical simulations were performed to evaluate the effectiveness of the ASVIS. The results obtained in this paper show that the values of the seat displacement of the ASVIS with NSS were reduced by 77.16% in comparison with those obtained with the traditional air spring isolator without NSS, which indicates that the design of the ASVIS isolator with NSS allows the effective isolation of vibrations in the low-frequency region.


Author(s):  
Md. Emdadul Hoque ◽  
Takeshi Mizuno ◽  
Yuji Ishino ◽  
Masaya Takasaki

A vibration isolation system is presented in this paper which is developed by the combination of multiple vibration isolation modules. Each module is fabricated by connecting a positive stiffness suspension in series with a negative stiffness suspension. Each vibration isolation module can be considered as a self-sufficient single-degree-of-freedom vibration isolation system. 3-DOF vibration isolation system can be developed by combining three modules. As the number of motions to be controlled and the number of actuators are equal, there is no redundancy in actuators in such vibration isolation systems. Experimental results are presented to verify the proposed concept of the development of MDOF vibration isolation system using vibration isolation modules.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Benjamin A. Fulcher ◽  
David W. Shahan ◽  
Michael R. Haberman ◽  
Carolyn Conner Seepersad ◽  
Preston S. Wilson

The behavior of a buckled beam mechanism, which exhibits both bistability and negative stiffness, is investigated for the purposes of passive shock and vibration isolation. The vibration and shock isolation systems investigated in this research include linear, positive stiffness springs in parallel with the transverse motion of buckled beams, resulting in quasizero stiffness behavior. For vibration isolation systems, quasizero stiffness lowers the resonance frequency of the system, thereby reducing its transmissibility at frequencies greater than resonance. For shock isolation systems, quasizero stiffness provides constant-force shock isolation at tailored force levels, thereby enabling increased capacity for absorbing shock energy relative to a comparable positive stiffness system. Single- and double-beam configurations that exhibit first-mode buckling are utilized for vibration isolation, and a single beam that exhibits first- and third-mode buckling is used for shock isolation. For all cases, the static and dynamic behavior of each configuration is modeled analytically. The models are then used to design prototype vibration and shock isolation systems that are fabricated using selective laser sintering (SLS). The dynamic behavior of the systems in response to base excitations is determined experimentally, and the results are compared to model-based predictions. The vibration isolation prototypes display isolation levels that are tunable by varying the axial compression of the beams. Double-beam systems are shown to provide greater reductions in resonance frequency than single-beam systems for comparable levels of axial compression. However, low-frequency isolation capabilities are sensitive to the high levels of precision required to obtain low levels of system stiffness. The shock isolation prototype provides isolation at prespecified threshold levels of force or acceleration. In the prototype system, an input shock with a peak acceleration of approximately 7 g is reduced to a peak acceleration of the isolated mass of approximately 1 g. High levels of negative acceleration are observed in models and prototype systems when the buckled beam snaps back to its original position; however, models indicate that large negative accelerations can be mitigated using one-way dampers.


Author(s):  
M.S. Korytov ◽  
◽  
V.S. Sherbakov ◽  
I.E. Pochekueva ◽  
◽  
...  

For vibration protection of operators of construction and road machines, a promising direction is the use of passive vibration protection systems based on mechanisms with quasi-zero rigidity. Passive vibration isolation systems, being less complex than active ones, require less frequent maintenance, are cheaper to manufacture and more reliable than active ones. The problem of selecting the optimal, most reliable and simple design of the mechanism with the effect of quasi-zero rigidity remains urgent. In this case, the most widespread use of elements that create negative stiffness. This requires elements with positive stiffness in the mechanism, which complicates the design. More promising structures of mechanisms, where elements with negative stiffness are not separated into a separate structure. In mechanisms such as the parallelogram, studied in this work, a section with quasi-zero stiffness can be provided with just one tension spring, which simplifies the design and reduces the cost of the entire vibration protection system. By the method of direct analytical inference for the presented diagram of a parallelogram mechanism with one spring, analytical expressions are obtained for the tensile force of the spring necessary to compensate for the force of gravity of the chair with the operator on the height of the chair and the length of the spring. As an example, the graphical dependences of the spring tensile force on the chair lift and on the spring’s own length are given as an example. It was found that the static force characteristic of the spring is a straight line passing through the origin. That is, the zero force corresponds to the zero spring length, which is not technically feasible. It is proposed to use a mechanism that replaces the tension spring, which will provide a given power characteristic.


2013 ◽  
Vol 6 (4) ◽  
pp. 559-563
Author(s):  
Justinas Kuncė ◽  
Mindaugas Jurevičius

The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article. Santrauka Nagrinėjama vibroizoliacinės sistemos, sudarytos iš optinio stalo ir dviejų neigiamo standumo staliukų, efektyvumas žadinant harmoniniu ir neharmoniniais būdais 0,2–110 Hz diapazone. Aprašyta eksperimentinių tyrimų atlikimo metodika ir atlikti virpesių perduodamumo tyrimai. Ištirta sudėtinė sistema, sudaryta iš dviejų neigiamo standumo virpesių izoliavimo staliukų ir optinio stalo. Nustatytos vibracijų slopinimo charakteristikos. Pateikti eksperimentų metu gauti rezultatai ir išvados.


Sign in / Sign up

Export Citation Format

Share Document