Heuristic physical property model for marine sediments

1980 ◽  
Vol 68 (5) ◽  
pp. 1361-1370 ◽  
Author(s):  
J. E. Matthews
2021 ◽  
pp. 106770
Author(s):  
Yanfang Liu ◽  
Keqin Feng ◽  
Hongling Zhou ◽  
Sixuan Ke

2012 ◽  
Vol 516-517 ◽  
pp. 858-865
Author(s):  
Qun Hui Lu ◽  
Yang Yan Zheng ◽  
Biao Yuan

Through finite volume method, this study establishes a steady state flow and heat transfer model of a single phase flow flowing vertically upward in annular space. The model sets the inner cylinder of the annular space as a heating body with fixed heat generation rate. Flow and heat transfer boundary layers are set between the flow and the inner cylinder wall, in order to give more accurate description of momentum and heat coupling and transfer processes between the fluid and the solid near the wall. Compared with the constant physical property model, the variable physical property model, in which the fluid density, heat transfer coefficient, and viscosity change along with the temperature, has relatively lower heat transfer capacity and a little bit lower interface shear stress between the fluid and the solid heat transfer surfaces. Through the comparison between Re and Ri of the constant physical property model and the variable physical properties model, it can be concluded that the physical property changes of the fluid have gradually lower impact on flow and heat transfer processes along with the acceleration of the forced circulation of the fluid.


2013 ◽  
Vol 421 ◽  
pp. 834-837 ◽  
Author(s):  
Guo Wei Hou ◽  
Xue Li ◽  
Jin Laing Zhang ◽  
Long Long Liu

3D geological modeling and visualization are the key technique issues to implement the plan of Digital Earth". However, 3D physical property model varies depending on the technology of 3D geological modeling which will bring about great changes in the reflection of reservoir property. In this paper, Some super voxel models, mathematical models of fault and geometrical models of fold have been contrived so as to show the space geometric configuration of the complicated geologic structures. And the architecture for integrated physical property modeling is established; Based on the physical property model, the spatial distribution and plane spread of reservor property is displayed detailedly with Sequential Gaussian simulation. By integrating geological database, sedimentary facies maps with those property models, geologists will be able to capture the partial characteristics and whole structure embodied in the geological data in a direct-viewing, figurative and accurate manner.


Geophysics ◽  
1989 ◽  
Vol 54 (5) ◽  
pp. 621-634 ◽  
Author(s):  
Lindrith Cordell ◽  
A. E. McCafferty

The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field’s local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical‐property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical‐property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. Where gravity and magnetic data are both available, terracing provides an effective means by which the two data sets can be compared directly. Results of the terracing operation somewhat resemble those of conventional susceptibility (or density) mapping. In contrast with conventional susceptibility mapping, however, the terraced function is a true step function, which cannot be depicted by means of contour lines. Magnetic or gravity fields calculated from the physical‐property model do not, in general, produce an exact fit to the observed data. By intent, the terraced map is more closely analogous to a geologic map in that domains are separated by hard‐edged domain boundaries and minor within‐domain variation is neglected. The terracing operator was applied separately to aeromagnetic and gravity data from a 136 km × 123 km area in eastern Kansas. Results provide a reasonably good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. The emerging picture of basement geology is much better resolved than that obtained either from the scanty available drill data or from interpretation of the geophysical data by inspection.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


2009 ◽  
Vol 23 (2) ◽  
pp. 63-76 ◽  
Author(s):  
Silke Paulmann ◽  
Sarah Jessen ◽  
Sonja A. Kotz

The multimodal nature of human communication has been well established. Yet few empirical studies have systematically examined the widely held belief that this form of perception is facilitated in comparison to unimodal or bimodal perception. In the current experiment we first explored the processing of unimodally presented facial expressions. Furthermore, auditory (prosodic and/or lexical-semantic) information was presented together with the visual information to investigate the processing of bimodal (facial and prosodic cues) and multimodal (facial, lexic, and prosodic cues) human communication. Participants engaged in an identity identification task, while event-related potentials (ERPs) were being recorded to examine early processing mechanisms as reflected in the P200 and N300 component. While the former component has repeatedly been linked to physical property stimulus processing, the latter has been linked to more evaluative “meaning-related” processing. A direct relationship between P200 and N300 amplitude and the number of information channels present was found. The multimodal-channel condition elicited the smallest amplitude in the P200 and N300 components, followed by an increased amplitude in each component for the bimodal-channel condition. The largest amplitude was observed for the unimodal condition. These data suggest that multimodal information induces clear facilitation in comparison to unimodal or bimodal information. The advantage of multimodal perception as reflected in the P200 and N300 components may thus reflect one of the mechanisms allowing for fast and accurate information processing in human communication.


Sign in / Sign up

Export Citation Format

Share Document