Laryngeal flow due to longitudinal sweeping motion of the vocal folds and its contribution to auto-oscillation

2015 ◽  
Vol 138 (1) ◽  
pp. 146-149
Author(s):  
Henri Boutin ◽  
John Smith ◽  
Joe Wolfe
Keyword(s):  
Author(s):  
Y. S. Alizade ◽  
L. B. Rudin

The potential predictive possibilities of minimally invasive prenosological diagnosis of voice disorders on the basis of combined Geno - and phenotyping of persons at risk of diseases of the vocal folds of professional origin.


2020 ◽  
Author(s):  
Jônatas Santos ◽  
Jugurta Montalvão ◽  
Israel Santos

2021 ◽  
Vol 11 (11) ◽  
pp. 4748
Author(s):  
Monika Balázsová ◽  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Adam Kosík

This study deals with the development of an accurate, efficient and robust method for the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity. This problem requires the reliable solution of flow in time-dependent domains and the solution of deformations of elastic bodies formed by several materials with complicated geometry depending on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE) method. The elasticity problem uses the non-stationary formulation of the dynamic system using the St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds deformation than for the linear elasticity model. Moreover, the numerical simulations showed that the differences between the two considered nonlinear material models are very small.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Nao Hiwatashi ◽  
Renjie Bing ◽  
Carina P. Doyle ◽  
Ryan C. Branski

AbstractVocal fold (VF) fibrosis is a major cause of intractable voice-related disability and reduced quality of life. Excision of fibrotic regions is suboptimal and associated with scar recurrence and/or further iatrogenic damage. Non-surgical interventions are limited, putatively related to limited insight regarding biochemical events underlying fibrosis, and downstream, the lack of therapeutic targets. YAP/TAZ integrates diverse cell signaling events and interacts with signaling pathways related to fibrosis, including the TGF-β/SMAD pathway. We investigated the expression of YAP/TAZ following vocal fold injury in vivo as well as the effects of TGF-β1 on YAP/TAZ activity in human vocal fold fibroblasts, fibroblast-myofibroblast transition, and TGF-β/SMAD signaling. Iatrogenic injury increased nuclear localization of YAP and TAZ in fibrotic rat vocal folds. In vitro, TGF-β1 activated YAP and TAZ in human VF fibroblasts, and inhibition of YAP/TAZ reversed TGF-β1-stimulated fibroplastic gene upregulation. Additionally, TGF-β1 induced localization of YAP and TAZ in close proximity to SMAD2/3, and nuclear accumulation of SMAD2/3 was inhibited by a YAP/TAZ inhibitor. Collectively, YAP and TAZ were synergistically activated with the TGF-β/SMAD pathway, and likely essential for the fibroplastic phenotypic shift in VF fibroblasts. Based on these data, YAP/TAZ may evolve as an attractive therapeutic target for VF fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alyssa Maxwell ◽  
Iris Adam ◽  
Pernille S. Larsen ◽  
Peter G. Sørensen ◽  
Coen P. H. Elemans

AbstractVocal behavior can be dramatically changed by both neural circuit development and postnatal maturation of the body. During song learning in songbirds, both the song system and syringeal muscles are functionally changing, but it is unknown if maturation of sound generators within the syrinx contributes to vocal development. Here we densely sample the respiratory pressure control space of the zebra finch syrinx in vitro. We show that the syrinx produces sound very efficiently and that key acoustic parameters, minimal fundamental frequency, entropy and source level, do not change over development in both sexes. Thus, our data suggest that the observed acoustic changes in vocal development must be attributed to changes in the motor control pathway, from song system circuitry to muscle force, and not by material property changes in the avian analog of the vocal folds. We propose that in songbirds, muscle use and training driven by the sexually dimorphic song system are the crucial drivers that lead to sexual dimorphism of the syringeal skeleton and musculature. The size and properties of the instrument are thus not changing, while its player is.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2129
Author(s):  
Satoru Miyamaru ◽  
Daizo Murakami ◽  
Kohei Nishimoto ◽  
Narihiro Kodama ◽  
Joji Tashiro ◽  
...  

We aimed to determine the optimal management of recurrent laryngeal nerve (RLN) involvement in thyroid cancer. We enrolled 80 patients with unilateral RLN involvement in thyroid cancer between 2000 and 2016. Eleven patients with preoperatively functional vocal folds (VFs) underwent sharp tumor resection to preserve the RLN (shaving group). Thirty-three patients underwent RLN reconstruction with RLN resection (reconstruction group). We divided the reconstruction group into two subgroups based on preoperative VF mobility (normal-reconstruction and paralyzed-reconstruction subgroups). In the cases where RLN reconstruction was difficult, phonosurgeries including arytenoid adduction (AA), with or without thyroplasty type I, or nerve muscle pedicle implantation with AA were performed later (phonosurgery group). We evaluated and compared vocal function among the evaluated periods and different groups. Postoperative vocal function in the shaving and normal-reconstruction subgroups was favorable. There were no significant differences between the two groups. In the paralyzed-reconstruction and phonosurgery groups, postoperative vocal function was significantly improved, and vocal function in the paralyzed-reconstruction subgroup was significantly better than that in the phonosurgery group. For optimal management of unilateral RLN involvement in thyroid cancer, first, sharp dissection should be performed, and if this is impossible, a simultaneous RLN reconstruction procedure should be adopted whenever possible.


Author(s):  
Sandhanakrishnan R ◽  
Rhea Jain ◽  
Suhashine Sukumar ◽  
Subramanian RP ◽  
Arun Karthick S ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1970
Author(s):  
Martin Lasota ◽  
Petr Šidlof ◽  
Manfred Kaltenbacher ◽  
Stefan Schoder

In an aeroacoustic simulation of human voice production, the effect of the sub-grid scale (SGS) model on the acoustic spectrum was investigated. In the first step, incompressible airflow in a 3D model of larynx with vocal folds undergoing prescribed two-degree-of-freedom oscillation was simulated by laminar and Large-Eddy Simulations (LES), using the One-Equation and Wall-Adaptive Local-Eddy (WALE) SGS models. Second, the aeroacoustic sources and the sound propagation in a domain composed of the larynx and vocal tract were computed by the Perturbed Convective Wave Equation (PCWE) for vowels [u:] and [i:]. The results show that the SGS model has a significant impact not only on the flow field, but also on the spectrum of the sound sampled 1 cm downstream of the lips. With the WALE model, which is known to handle the near-wall and high-shear regions more precisely, the simulations predict significantly higher peak volumetric flow rates of air than those of the One-Equation model, only slightly lower than the laminar simulation. The usage of the WALE SGS model also results in higher sound pressure levels of the higher harmonic frequencies.


Sign in / Sign up

Export Citation Format

Share Document