Open-source deep learning models for acoustic detection and classification of orcas

2021 ◽  
Vol 150 (4) ◽  
pp. A286-A286
Author(s):  
Sadman Sakib ◽  
Steven Bergner ◽  
Dave Campbell ◽  
Mike Dowd ◽  
Fabio Frazao ◽  
...  
Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2019 ◽  
Vol 9 (22) ◽  
pp. 4871 ◽  
Author(s):  
Quan Liu ◽  
Chen Feng ◽  
Zida Song ◽  
Joseph Louis ◽  
Jian Zhou

Earthmoving is an integral civil engineering operation of significance, and tracking its productivity requires the statistics of loads moved by dump trucks. Since current truck loads’ statistics methods are laborious, costly, and limited in application, this paper presents the framework of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck classification as the core work. Since convolutional neural network (CNN) and its transfer learning (TL) forms are popular vision-based deep learning models and numerous in type, a comparison study is conducted to test the framework’s core work feasibility and evaluate the performance of different deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL models in full/empty-load truck classification, and the results revealed that while several provided satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the core work feasibility of the proposed FEQS framework. Further discussion provides model choice suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt different TL methods have advantages in either working accuracy or speed for different tasks.


Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 427 ◽  
Author(s):  
Laith Alzubaidi ◽  
Mohammed A. Fadhel ◽  
Omran Al-Shamma ◽  
Jinglan Zhang ◽  
Ye Duan

Sickle cell anemia, which is also called sickle cell disease (SCD), is a hematological disorder that causes occlusion in blood vessels, leading to hurtful episodes and even death. The key function of red blood cells (erythrocytes) is to supply all the parts of the human body with oxygen. Red blood cells (RBCs) form a crescent or sickle shape when sickle cell anemia affects them. This abnormal shape makes it difficult for sickle cells to move through the bloodstream, hence decreasing the oxygen flow. The precise classification of RBCs is the first step toward accurate diagnosis, which aids in evaluating the danger level of sickle cell anemia. The manual classification methods of erythrocytes require immense time, and it is possible that errors may be made throughout the classification stage. Traditional computer-aided techniques, which have been employed for erythrocyte classification, are based on handcrafted features techniques, and their performance relies on the selected features. They also are very sensitive to different sizes, colors, and complex shapes. However, microscopy images of erythrocytes are very complex in shape with different sizes. To this end, this research proposes lightweight deep learning models that classify the erythrocytes into three classes: circular (normal), elongated (sickle cells), and other blood content. These models are different in the number of layers and learnable filters. The available datasets of red blood cells with sickle cell disease are very small for training deep learning models. Therefore, addressing the lack of training data is the main aim of this paper. To tackle this issue and optimize the performance, the transfer learning technique is utilized. Transfer learning does not significantly affect performance on medical image tasks when the source domain is completely different from the target domain. In some cases, it can degrade the performance. Hence, we have applied the same domain transfer learning, unlike other methods that used the ImageNet dataset for transfer learning. To minimize the overfitting effect, we have utilized several data augmentation techniques. Our model obtained state-of-the-art performance and outperformed the latest methods by achieving an accuracy of 99.54% with our model and 99.98% with our model plus a multiclass SVM classifier on the erythrocytesIDB dataset and 98.87% on the collected dataset.


Author(s):  
Ahmed Wasif Reza ◽  
Md Mahamudul Hasan ◽  
Nazla Nowrin ◽  
Mir Moynuddin Ahmed Shibly

Coronavirus Disease (COVID-19) is a devastating pandemic in the history of mankind. It is a highly contagious flu that can spread from human to human without revealing any symptoms. For being so contagious, detecting patients with it and isolating them has become the primary concern for healthcare professionals. This study presented an alternative way to identify COVID-19 patients by doing an automatic examination of chest X-rays of the patients. To develop such an efficient system, six pre-trained deep learning models were used. Those models were: VGG16, InceptionV3, Xception, DenseNet201, InceptionResNetV2, and EfficientNetB4. Those models were developed on two open-source datasets that have chest X-rays of patients diagnosed with COVID-19. Among the models, EfficientNetB4 achieved better performances on both datasets with 96% and 97% of accuracies. The empirical results were also exemplary. This type of automated system can help us fight this dangerous virus outbreak.


2019 ◽  
Author(s):  
Ismael Araujo ◽  
Juan Gamboa ◽  
Adenilton Silva

To recognize patterns that are usually imperceptible by human beings has been one of the main advantages of using machine learning algorithms The use of Deep Learning techniques has been promising to the classification problems, especially the ones related to image classification. The classification of gases detected by an artificial nose is one other area where Deep Learning techniques can be used to seek classification improvements. Succeeding in a classification task can result in many advantages to quality control, as well as to preventing accidents. In this work, it is presented some Deep Learning models specifically created to the task of gas classification.


Patterns ◽  
2021 ◽  
Vol 2 (10) ◽  
pp. 100351
Author(s):  
Nanditha Mallesh ◽  
Max Zhao ◽  
Lisa Meintker ◽  
Alexander Höllein ◽  
Franz Elsner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document