Is Increased Residual Shank Length a Competitive Advantage for Elite Transtibial Amputee Long Jumpers?

2011 ◽  
Vol 28 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Lee Nolan ◽  
Benjamin L. Patritti ◽  
Laura Stana ◽  
Sean M. Tweedy

The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete’s best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.

1995 ◽  
Vol 11 (2) ◽  
pp. 142-162 ◽  
Author(s):  
William P. Berg ◽  
Nancy L. Greer

This study determined the kinematics of the final 11 steps of the long jump approach (LJA) for 19 novice long jumpers. Associations between takeoff accuracy and jump performance were identified, and comparisons of LJA kinematics were made with previous investigations of horizontal jumps performed by expert long jumpers. Results indicated that absolute takeoff error was not an important determinant of jump distance for the novice long jumpers. Additionally, novice jumpers differed from expert jumpers in terms of the relationships among specific variables. The results suggest that kinematic variables that appear to be causally related to jump performance in experts may not piay a similar role in the performance of novices. Hypotheses for these differences were offered. Differences between the LJAs of novice and expert long jumpers warrant further investigation, so that their origins can be determined and used to develop effective training regimes.


1984 ◽  
Vol 106 (3) ◽  
pp. 244-248 ◽  
Author(s):  
A. J. Ward-Smith

The aerial phase of the long jump is calculated by numerical integration of the equations of motion. Consideration is given to the effects on performance of the horizontal and vertical components of velocity at takeoff, aerodynamic drag, wind assistance and the vertical displacement of the center of mass which occurs during the course of the jump. For still air conditions it is shown that an analytical solution due to Lamb [6] compares very favorably with the numerical solution, providing an excellent description of the trajectory. Calculations neglecting the effect of aerodynamic drag are shown to overestimate the jump distance of world-class athletes by from 9 to 11 cm under still air conditions.


2021 ◽  
Vol 77 (1) ◽  
pp. 25-35
Author(s):  
Alberto Sánchez-Sixto ◽  
Andrew J Harrison ◽  
Pablo Floría

Abstract The purpose of this study was to assess and compare the effects of plyometric training and combined training programs on vertical jump kinematics and kinetics of female basketball players. Thirty-six female basketball players were included in the study and further divided into three groups: plyometric training, n = 11; combined training n =13; and a control group, n =12. Combined training comprised full squat exercise with low resistance (50-65% 1RM) and low volume (3-6 repetitions/set) combined with repeated jumps. Plyometric training included drop jumps and repeated jumps. Both training methods showed a moderate increase in jump performance, although combined training achieved substantially higher values than plyometric training alone. After plyometric training, the vertical velocity and displacement of the center of mass of the countermovement jump increased, while force variables decreased. Combined training increased power, vertical velocity and displacement of the center of mass, but force variables remained unchanged. Both training methods improved jump height, velocity and displacement of the center of mass. Combined training maintained force measures while plyometric training decreased them. These results indicate that combined training might provide better outcomes on jump performance than plyometric training alone. It also appears important to measure biomechanical variables to appropriately interpret the effects of different training methods.


2014 ◽  
Vol 42 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Ahmet Alptekin

Abstract The purposes of this study were to compare the kinematic variables in youth swimmers during the grab start between sexes and to investigate the relationship between body composition and kinematic variables of the participants. Six female (Mage = 13.71 ± 0.49 yrs) and seven male (Mage = 14.00 ± 1.07 yrs) swimmers participated in this study. All participants were required to perform grab start tests in random order (three trials by each participant), while the best attempt was analyzed. Nineteen kinematic parameters consisting of block time, flight time, flight distance, total time, total distance, horizontal and vertical displacement of the center of mass (CM) at take-off, horizontal and vertical displacement of the CM at entry, height of take-off and entry, relative height of take-off, horizontal and vertical velocity of the CM at take-off, horizontal and vertical velocity of the CM at entry, angle of take-off, angle of entry and angle of knee at block were analyzed. Out of the 19 evaluated kinematic parameters, a statistical difference between the female and male group was found only in the total distance. Therefore, both female and male groups are considered as only one group and merged after analyzing the results. Statistical analysis showed positive and negative correlations between horizontal / vertical velocity of CM at take-off and several kinematic variables (e.g. angle of entry (rhorizontal = -.868, p=.000 / rvertical = .591, p=.02), total distance (rhorizontal = .594, p=.02 / rvertical = .54, p=.04), and height of take-off (rvertical = .888, p=.000), respectively). On the other hand, positive and negative correlations were found between somatotype components and several kinematic variables (e.g. horizontal displacement of CM at entry (rendomorphy = -.626, p=.013), angle of entry (rmesomorphy = -.686, p=.005 / rectomorphy = .52, p=.047), total distance (rendomorphy = -.626, p=.012), and height of take-off (rendomorphy = -.633, p=.011 / rectomorphy = .515, p=.05)). In conclusion, results show that in order to be successful at grab start performance, a swimmer should target to get higher horizontal velocity of CM at take-off and optimize the angle of take-off so this movement form supplies more total distance to the swimmer. Coaches should consider improving start performance and adding start training to regular training sessions. Moreover, youth male and female swimmers can participate together in the grab start training


2012 ◽  
Vol 36 (3) ◽  
pp. 297-305 ◽  
Author(s):  
L Nolan ◽  
Benjamin L Patritti ◽  
Kathy J Simpson

Background: Increasing numbers of long jumpers with lower limb amputations choose to take off from their prosthetic limb. It is not yet known what difference in technique, if any, this requires, or which is more advantageous. Objectives: To investigate kinematic differences in long jump technique in athletes with a unilateral transtibial ampution (TT) who take off from their prosthetic limb versus those who take off from their intact limb. Study Design: Naturalistic, field-based, observational; independent group, nonparametric comparison. Methods: Two-dimensional sagittal plane kinematic analysis was performed on all athletes competing in the men’s Paralympic TT long jump finals. Five athletes took off from their prosthetic limb (TOprosth) and five from their intact limb (TOintact). Results: No differences were seen between the two groups in terms of jump distance, approach speed or vertical velocity at touch down. While in contact with the take-off board, the two groups gained a similar amount of vertical velocity. However, the TOprosth group appeared to conserve horizontal velocity by using the prosthesis as a ‘springboard’, minimizing the large hip and knee range of motion displayed by the TOintact group and athletes in previous studies. Conclusions: While differences in technique were observed, no difference was found for jump distance. Clinical relevance Athletes choosing to take-off from their prosthetic limb in long jump require a different technique to those who choose to take-off from their intact limb. Knowledge of the correct technique can help reduce excessive training which can lead to injury, particularly in the residual limb.


2005 ◽  
Vol 05 (02) ◽  
pp. 203-215 ◽  
Author(s):  
KUANG-YOU B. CHENG ◽  
WEN-CHIEN CHEN

A planar 4-segment human body model is used to simulate and study the effects of starting posture on standing long jumping performance. The model consists of frictionless hinge joints and is driven by joint torque actuators. The four segments represent feet, shanks, thighs, and trunk with head and arms. Movement simulations start from three different postures: high squat, squat, and low squat. The control variables are the joint torque activation levels and takeoff time. The objective function is the maximum horizontal distance from the toe point at takeoff to the center of mass (c.m.) position at landing. Optimal simulation results agree reasonably well with measurements. Different from previous high jump simulation study, slight dependence of initial posture on jump distance is found. Longer jump distance from a higher initial posture is probably due to greater range of countermovement that results in larger extension joint torque generation.


1994 ◽  
Vol 10 (1) ◽  
pp. 61-78 ◽  
Author(s):  
Adrian Lees ◽  
Philip Graham-Smith ◽  
Neil Fowler

This study was concerned with the measurement of performance variables from competitors in the men's long jump final of the World Student Games held in Sheffield, England, in July 1991. Several performances of 10 finalists were recorded on cine film at 100 Hz. Resulting sagittal plane kinematic data were obtained for the last stride, touchdown, and takeoff for a total of 27 jumps. It was confirmed that takeoff velocity was a function of touchdown velocity, and that there was an increase in vertical velocity at the expense of a reduction of horizontal velocity. It was concluded that there was evidence for mechanisms which may be termed mechanical, biomechanical, and muscular. The former relates to the generation of vertical velocity by the body pivoting over the base of support during the compression phase, and a lifting of the arms and free leg during the lift phase; the second is the elastic reutilization of energy; and the third is the contribution by concentric muscular contraction.


1998 ◽  
Vol 14 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Bing Yu ◽  
James G. Andrews

The purpose of this study was to investigate relationships between free limb motions and triple jump performance. The subjects were 13 elite male triple jumpers. Three-dimensional videographic data were collected using a direct linear transformation technique with panning cameras. Changes in the velocity of the whole body center of gravity (G), changes in the whole body angular momentum about G, changes in the velocity of G due to free limb motions, and changes in the whole body angular momentum about G due to free limb motions were determined for each of the three support phases. Free limb motions were associated with decreases in the forward horizontal velocity of G and increases in the vertical velocity of G and significantly influenced changes of the corresponding velocity components of G when the changes were large. The free limb motions also created some angular momentum components about G during each support phase but did not significantly influence the changes of the corresponding angular momentum components of the whole body. Neither the changes in the three velocity components of G nor the changes in the three angular momentum components of the whole body about G due to free limb motions were significantly related to the actual distance of the triple jump.


Author(s):  
Jessica A. Calderbank ◽  
Paul Comfort ◽  
John J. McMahon

Purpose: The aim of the current study was to investigate the relationship between dive distance (DD) and countermovement jump (CMJ) height, track start CMJ height, countermovement broad jump (CMBJ) distance, track start broad jump distance, and isometric midthigh pull peak force and relative peak force. Methods: A total of 27 (11 female and 16 male) regional-national-international-standard swimmers (mean [SD]; age = 19.5 [5.5] y; mass = 69.3 [10.5] kg; height = 1.77 [0.09] m) performed 3 trials of a track start dive, CMJ, track start CMJ, CMBJ, track start broad jump, and isometric midthigh pull. Results: Data were separated into pooled (females and males combined), females, and males. Large to very large correlations were found between DD and all variables tested for pooled data (r = .554–.853, P < .001–.008), with DD-CMBJ displaying the highest correlation (r = .853, P < .001). CMBJ accounted for 70% of the variance in DD. Females demonstrated moderate nonsignificant correlations between DD isometric midthigh pull (r = .379, P < .125). Males demonstrated very large significant correlations between DD-CMJ (r = .761, P < .001). Conclusions: DD demonstrated strong correlations with jump performances and multijoint isometric force production in pooled data. Males showed stronger correlations than females due to being stronger and being able to perform the jumping/strength tasks to a higher standard. Enhanced jump performance and increased maximal force production may, therefore, enhance DD in swimmers.


Sign in / Sign up

Export Citation Format

Share Document