Prolonged Vitamin C Supplementation and Recovery from Demanding Exercise

2001 ◽  
Vol 11 (4) ◽  
pp. 466-481 ◽  
Author(s):  
Dylan Thompson ◽  
Clyde Williams ◽  
Stephen J. McGregor ◽  
Ceri W. Nicholas ◽  
Frank McArdle ◽  
...  

The aim of the present study was to investigate whether 2 weeks of vitamin C supplementation affects recovery from an unaccustomed bout of exercise. Sixteen male subjects were allocated to either a placebo (P; n = 8) or vitamin C group (VC; n = 8). The VC group consumed 200 mg of ascorbic acid twice a day, whereas the P group consumed identical capsules containing 200 mg of lactose. Subjects performed a prolonged (90-min) intermittent shuttle-running test 14 days after supplementation began. Post-exercise serum creatine kinase activities and myoglobin concentrations were unaffected by supplementation. However, vitamin C supplementation had modest beneficial effects on muscle soreness, muscle function, and plasma concentrations of malondialdehyde. Furthermore, although plasma interleukin-6 increased immediately after exercise in both groups, values in the VC group were lower than in the P group 2 hours after exercise (p < .05). These results suggest that prolonged vitamin C supplementation has some modest beneficial effects on recovery from unaccustomed exercise.

2006 ◽  
Vol 16 (3) ◽  
pp. 270-280 ◽  
Author(s):  
S.C. Bryer ◽  
A.H. Goldfarb

This study investigated if vitamin C supplementation before and after eccentric exercise could reduce muscle soreness (MS), oxidative stress, and muscle function. Eighteen healthy men randomly assigned to either a placebo (P) or vitamin C (VC) (3 g/d) treatment group took pills for 2 wk prior and 4 d after performing 70 eccentric elbow extensions with their non-dominant arm. MS increased in both groups with significantly reduced MS for the first 24 h with VC. Range of motion was reduced equally in both groups after the exercise (P ≥ 0.05). Muscle force declined equally and was unaffected by treatment. VC attenuated the creatine kinase (CK) increase at 48 h after exercise with similar CK after this time. Gluta-thione ratio (oxidized glutathione/total glutathione) was significantly increased at 4 and 24 h with P but VC prevented this change. These data suggest that vitamin C pretreatment can reduce MS, delay CK increase, and prevent blood glutathione oxidation with little influence on muscle function loss.


1999 ◽  
Vol 82 (3) ◽  
pp. 203-212 ◽  
Author(s):  
Karin H. van het Hof ◽  
Lilian B. M. Tijburg ◽  
K. Pietrzik ◽  
Jan A. Weststrate

Carotenoids, folate and vitamin C may contribute to the observed beneficial effects of increased vegetable intake. Currently, knowledge on the bioavailability of these compounds from vegetables is limited. We compared the efficacy of different vegetables, at the same level of intake (i.e. 300 g/d), in increasing plasma levels of carotenoids, folate and vitamin C and we investigated if disruption of the vegetable matrix would enhance the bioavailability of these micronutrients. In an incomplete block design, sixty-nine volunteers consumed a control meal without vegetables and three out of four vegetable meals (i.e. broccoli, green peas, whole leaf spinach, chopped spinach; containing between 1·7 and 24·6 mg β-carotene, 3·8 and 26 mg lutein, 0·22 and 0·60 mg folate and 26 and 93 mg vitamin C) or a meal supplemented with synthetic β-carotene (33·3 mg). Meals were consumed for 4 d and fasting blood samples were taken at the end of each period. Consumption of the spinach-supplemented meal did not affect plasma levels of β-carotene, although the β-carotene content was 10-fold those of broccoli and green peas, which induced significant increases in plasma β-carotene levels (28 (95 % CI 6·4, 55) % and 26 (95 % CI 2·6, 54) % respectively). The β-carotene-supplemented meal increased plasma concentrations of β-carotene effectively (517 (95 % CI 409, 648) %). All vegetable meals increased the plasma concentrations of lutein and vitamin C significantly. Broccoli and green peas were, when expressed per mg carotenoid consumed, also more effective sources of lutein than spinach. A significant increase in plasma folate concentration was found only after consumption of the spinach-supplemented meal, which provided the highest level of folate. Disruption of the spinach matrix increased the plasma responses to both lutein (14 (95 % CI 3·7, 25) %) and folate (10 (95 % CI 2·2, 18) %), whereas it did not affect the response to β-carotene. We conclude that the bioavailabilities of β-carotene and lutein vary substantially among different vegetables and that the bioavailabilities of lutein and folate from spinach can be improved by disruption of the vegetable matrix.


2020 ◽  
Vol 21 (18) ◽  
pp. 6469
Author(s):  
Małgorzata Żychowska ◽  
Agata Grzybkowska ◽  
Monika Wiech ◽  
Robert Urbański ◽  
Wanda Pilch ◽  
...  

Physical training and antioxidant supplementation may influence iron metabolism through reduced oxidative stress and subsequent lowering of mRNA levels of genes that are easily induced by this stress, including those responsible for iron homeostasis. Fifteen elderly women participated in our 12-week experiment, involving six weeks of training without supplementation and six weeks of training supported by oral supplementation of 1000 mg of vitamin C daily. The participants were divided into two groups (n = 7 in group 1 and n = 8 in group 2). In group 1, we applied vitamin C supplementation in the first six weeks of training, while in group 2 during the remaining six weeks of training. In both phases, the health-related training occurred three times per week. Training accompanied by vitamin C supplementation did not affect prooxidative/antioxidative balance but significantly decreased ferritin heavy chain (FTH) and ferritin light chain (FTL) mRNA in leukocytes (for FTH mRNA from 2^64.24 to 2^11.06, p = 0.03 in group 1 and from 2^60.54 to 2^16.03, p = 0.01 in group 2, for FTL mRNA from 2^20.22 to 2^4.53, p = 0.01 in group 2). We concluded that vitamin C supplementation might have caused a decrease in gene expression of two important antioxidative genes (FTH, FTL) and had no effect on plasma prooxidative/antioxidative balance.


2000 ◽  
Vol 100 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Geoffrey H Tofler ◽  
James J Stec ◽  
Ingo Stubbe ◽  
Jeanne Beadle ◽  
Dali Feng ◽  
...  

2003 ◽  
Vol 89 (3) ◽  
pp. 393-400 ◽  
Author(s):  
D. Thompson ◽  
C. Williams ◽  
P. Garcia-Roves ◽  
S. J. McGregor ◽  
F. McArdle ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3559
Author(s):  
Aggelos Pappas ◽  
Athanasios Tsiokanos ◽  
Ioannis Fatouros ◽  
Athanasios Poulios ◽  
Dimitris Kouretas ◽  
...  

Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.


2001 ◽  
Vol 22 (1) ◽  
pp. 68-75 ◽  
Author(s):  
D Thompson ◽  
C Williams ◽  
M Kingsley ◽  
C W Nicholas ◽  
H KA Lakomy ◽  
...  

2005 ◽  
Vol 15 (5) ◽  
pp. 465-479 ◽  
Author(s):  
Glen Davison ◽  
Michael Gleeson

The aim of the present study was to investigate the effect of vitamin C with or without carbohydrate consumed acutely in beverages before and during prolonged cycling on immunoendocrine responses. In a single blind, randomized manner six healthy, moderately trained males exercised for 2.5 h at 60% VO2max and consumed either placebo (PLA), carbohydrate (CHO, 6% w/v), vitamin C (VC, 0.15% w/v) or CHO+VC beverages before and during the bouts; trials were separated by 1 wk. CHO and CHO+VC significantly blunted the post-exercise increase in plasma concentrations of cortisol, ACTH, total leukocyte, and neutrophil counts and limited the decrease in plasma glucose concentration and bacteria-stimulated neutrophil degranulation. VC increased plasma antioxidant capacity (PAC) during exercise (P < 0.05) but had no effect on any of the immunoendocrine responses (P > 0.05). CHO+VC increased PAC compared to CHO but had no greater effects, above those observed with CHO alone, on any of the immunoendocrine responses. In conclusion, acute supplementation with a high dose of VC has little or no effect on the hormonal, interleukin-6, or immune response to prolonged exercise and combined ingestion of VC with CHO provides no additional effects compared with CHO alone.


Sign in / Sign up

Export Citation Format

Share Document