Energy Balance, Macronutrient Intake, and Hydration Status During a 1,230 km Ultra-Endurance Bike Marathon

2014 ◽  
Vol 24 (5) ◽  
pp. 497-506 ◽  
Author(s):  
Bjoern Geesmann ◽  
Joachim Mester ◽  
Karsten Koehler

Athletes competing in ultra-endurance events are advised to meet energy requirements, to supply appropriate amounts of carbohydrates (CHO), and to be adequately hydrated before and during exercise. In practice, these recommendations may not be followed because of satiety, gastrointestinal discomfort, and fatigue. The purpose of the study was to assess energy balance, macronutrient intake and hydration status before and during a 1,230-km bike marathon. A group of 14 well-trained participants (VO2max: 63.2 ± 3.3 ml/kg/min) completed the marathon after 42:47 hr. Ad libitum food and fluid intake were monitored throughout the event. Energy expenditure (EE) was derived from power output and urine and blood markers were collected before the start, after 310, 618, and 921 km, after the finish, and 12 hr after the finish. Energy intake (EI; 19,749 ± 4,502 kcal) was lower than EE (25,303 ± 2,436 kcal) in 12 of 14 athletes. EI and CHO intake (average: 57.1 ± 17.7 g/hr) decreased significantly after km 618 (p < .05). Participants ingested on average 392 ± 85 ml/hr of fluid, but fluid intake decreased after km 618 (p < .05). Hydration appeared suboptimal before the start (urine specific gravity: 1.022 ± 0.010 g/ml) but did not change significantly throughout the event. The results show that participants failed to maintain in energy balance and that CHO and fluid intake dropped below recommended values during the second half of the bike marathon. Individual strategies to overcome satiety and fatigue may be necessary to improve eating and drinking behavior during prolonged ultra-endurance exercise.

Author(s):  
Chloé Lavoué ◽  
Julien Siracusa ◽  
Émeric Chalchat ◽  
Cyprien Bourrilhon ◽  
Keyne Charlot

An amendment to this paper has been published and can be accessed via the original article.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1995 ◽  
Author(s):  
Pantelis Nikolaidis ◽  
Eleftherios Veniamakis ◽  
Thomas Rosemann ◽  
Beat Knechtle

Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.


2020 ◽  
Vol 15 (2) ◽  
pp. 213-221
Author(s):  
Oliver R. Barley ◽  
Dale W. Chapman ◽  
Georgios Mavropalias ◽  
Chris R. Abbiss

Purpose: To examine the influence of fluid intake on heat acclimation and the subsequent effects on exercise performance following acute hypohydration. Methods: Participants were randomly assigned to 1 of 2 groups, either able to consume water ad libitum (n = 10; age 23 [3] y, height 1.81 [0.09] m, body mass 87 [13] kg; HAW) or not allowed fluid (n = 10; age 26 [5] y, height 1.76 [0.05] m, body mass 79 [10] kg; HANW) throughout 12 × 1.5-h passive heat-acclimation sessions. Experimental trials were completed on 2 occasions before (2 baseline trials) and 1 following the heat-acclimation sessions. These sessions involved 3 h of passive heating (45°C, 38% relative humidity) to induce hypohydration followed by 3 h of ad libitum food and fluid intake after which participants performed a repeat sled-push test to assess physical performance. Urine and blood samples were collected before, immediately, and 3 h following hypohydration to assess hydration status. Mood was also assessed at the same time points. Results: No meaningful differences in physiological or performance variables were observed between HANW and HAW at any time point. Using pooled data, mean sprint speed was significantly (P < .001) faster following heat acclimation (4.6 [0.7] s compared with 5.1 [0.8] s). Furthermore, heat acclimation appeared to improve mood following hypohydration. Conclusions: Results suggest that passive heat-acclimation protocols may be effective at improving short-duration repeat-effort performance following acute hypohydration.


2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


Author(s):  
Courteney L. Benjamin ◽  
Elliot P. Norton ◽  
Benjamin M. Shirley ◽  
Rebecca R. Rogers ◽  
Tyler D. Williams ◽  
...  

The purpose of this study was to assess the effect of two fluid intake protocols on alertness and reaction time before and after fluid intake. Healthy college-age males (n = 12) followed two fluid intake protocols on separate occasions: (1) prescribed fluid (PF) and fluid restricted (FR). In PF, participants were instructed to consume 500 mL of fluid the night prior to and the morning of data collection. In FR, participants were instructed to refrain from the consumption of fluid for 12 h. To assess hydration status, urine specific gravity and urine color were measured. Participants perceived level of thirst and alertness were also recorded. Participants then completed visuomotor reaction time tests using the Dynavision LED board, using both a central visuomotor test and a peripheral visuomotor test (PVRT) prior to (1) and following (2) the ingestion of 100 mL of water. Participants displayed significantly improved PVRT in PF state as compared to FR (PF1 = 1.13 ± 0.16, PF2 = 1.04 ± 0.14; FR1 = 1.27 ± 0.27, FR2 = 1.18 ± 0.20; p = 0.038, ηp2 = 0.363). Both CVRT and PVRT improved over time, following the ingestion of 100 mL of fluid. Participants in the PF state were also significantly more alert than participants in the FR state (PF = 4 ± 2, FR = 5 ± 2; p = 0.019, ES = 0.839). Collectively, perceived alertness and PVRT were negatively impacted by FR.


2004 ◽  
Vol 14 (6) ◽  
pp. 709-719 ◽  
Author(s):  
V.O. Onywera ◽  
F.K. Kiplamai ◽  
P.J. Tuitoek ◽  
M.K. Boit ◽  
Y.P. Pitsiladis

The food and macronutrient intake of elite Kenyan runners was compared to recommendations for endurance athletes. Estimated energy intake (EI: 2987 ± 293 kcal; mean ± standard deviation) was lower than energy expenditure (EE: 3605 ± 119 kcal; P < 0.001) and body mass (BM: 58.9 ± 2.7 kg vs. 58.3 ± 2.6 kg; P < 0.001) was reduced over the 7-d intense training period. Diet was high in carbohydrate (76.5%, 10.4 g/kg BM per day) and low in fat (13.4%). Protein intake (10.1%; 1.3 g/kg BM per day) matched recommendations for protein intake. Fluid intake was modest and mainly in the form of water (1113 ± 269 mL; 0.34 ± 0.16 mL/kcal) and tea (1243 ± 348 mL). Although the diet met most recommendations for endurance athletes for macronutrient intake, it remains to be determined if modifying energy balance and fluid intake will enhance the performance of elite Kenyan runners.


2009 ◽  
Vol 44 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Kristin L. Osterberg ◽  
Craig A. Horswill ◽  
Lindsay B. Baker

Abstract Context: Urine specific gravity (USG) has been used to estimate hydration status in athletes on the field, with increasing levels of hypohydration indicated by higher USG measurements (eg, greater than 1.020). Whether initial hydration status based on a urine measure is related to subsequent drinking response during exercise or athletic competition is unclear. Objective: To determine the relationship between pregame USG and the volume of fluid consumed by players in a professional basketball game. Design: Cross-sectional study. Setting: Basketball players were monitored during Summer League competition. Patients or Other Participants: Players (n  =  29) from 5 teams of the National Basketball Association agreed to participate. Main Outcome Measure(s): Pregame USG was measured for each player on 2 occasions. Athletes were given ad libitum access to fluid during each game and were unaware of the purpose of the study. Volume of fluid intake was measured for each player. To assess sweat loss, athletes were weighed in shorts before and after each game. Results: Sweat loss ranged from 1.0 to 4.6 L, with a mean sweat loss of 2.2 ± 0.8 L. Fluid intake ranged from 0.1 to 2.9 L, with a mean fluid intake of 1.0 ± 0.6 L. Pregame USG was greater than 1.020 in 52% of the urine samples collected and was not correlated with fluid volume consumed during either of the games (r  =  0.15, P  =  .48, and r  =  0.15, P  =  .52, respectively). Conclusions: Approximately half of the players began the games in a hypohydrated state, as indicated by USG. Fluid intake during the game did not compensate for poor hydration status before competition. Furthermore, sweat losses in these players during games were substantial (greater than 2 L in approximately 20 minutes of playing time). Therefore, both pregame and during-game hydration strategies, such as beverage availability and player education, should be emphasized.


Sports ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 140 ◽  
Author(s):  
Daan Hoogervorst ◽  
Nancy van der Burg ◽  
Joline J. Versteegen ◽  
Karin J. Lambrechtse ◽  
Martijn I. Redegeld ◽  
...  

This study investigated the differences in gastrointestinal (GI) and exercise related complaints between groups of runners competing at different distances using web-based questionnaires. Total (severe) complaints were reported by 89.3% (49.7%) of the runners during the race vs. 70.6% (29.4%) after the race. Significant differences between groups were described for marathon (n = 98) and 60 km (n = 43) runners. During competition, runners reported the urge to urinate (47.7%), muscle cramps (43.6%) and belching (43.6%). The prevalence of bloating, flatulence, side ache and dizziness differed between distances (p < 0.02). There were small to moderate negative correlations between food and fluid intake and GI complaints. After competition (12 h), 70.6% of participants reported complaints, with muscle cramps (47.6%), flatulence (19.0%) and bloating (12.7%) being the most prevalent. Prevalence of belching, nausea, stomach cramps and muscle cramps differed between race distances (p < 0.04). There were small to high positive correlations between complaints during and after competition (p < 0.05). In conclusion, runners of all distances reported a high prevalence of GI and other exercise related complaints. There were some small differences in reporting type and severity of complaints between distances. Results showed small to strong correlations between complaints during and after competition and with nutrient intake, without a clear similar pattern for all distances.


2016 ◽  
Vol 26 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Lawrence E. Armstrong ◽  
Evan C. Johnson ◽  
Amy L. McKenzie ◽  
Lindsay A. Ellis ◽  
Keith H. Williamson

This field investigation assessed differences (e.g., drinking behavior, hydration status, perceptual ratings) between female and male endurance cyclists who completed a 164-km event in a hot environment (35 °C mean dry bulb) to inform rehydration recommendations for athletes. Three years of data were pooled to create 2 groups of cyclists: women (n = 15) and men (n = 88). Women were significantly smaller (p < .001) than men in height (166 ± 5 vs. 179 ± 7 cm), body mass (64.6 ± 7.3 vs. 86.4 ± 12.3 kg), and body mass index (BMI; 23.3 ± 1.8 vs. 26.9 ± 3.4) and had lower preevent urinary indices of hydration status, but were similar to men in age (43 ± 7 years vs. 44 ± 9 years) and exercise time (7.77 ± 1.24 hr vs. 7.23 ± 1.75 hr). During the 164-km ride, women lost less body mass (−0.7 ± 1.0 vs. −1.7 ± 1.5 kg; −1.1 ± 1.6% vs. −1.9 ± 1.8% of body weight; p < .005) and consumed less fluid than men (4.80 ± 1.28 L vs. 5.59 ± 2.13 L; p < .005). Women consumed a similar volume of fluid as men, relative to body mass (milliliters/kilogram). To control for performance and anthropomorphic characteristics, 15 women were pair-matched with 15 men on the basis of exercise time on the course and BMI; urine-specific gravity, urine color, and body mass change (kilograms and percentage) were different (p < .05) in 4 of 6 comparisons. No gender differences were observed for ratings of thirst, thermal sensation, or perceived exertion. In conclusion, differences in relative fluid volume consumed and hydration indices suggest that professional sports medicine organizations should consider gender and individualized drinking plans when formulating pronouncements regarding rehydration during exercise.


Author(s):  
Stefan Pettersson ◽  
Christina M. Berg

Weight category athletes are known for practicing rapid weight loss before competition weigh-in. After weigh-in, athletes strive to restore euhydration and body mass through food and fluid intake. The aim of the current study was to assess prevalence of hypohydration at competition time among elite athletes’ in four different combat sports, and how water intake and timing of official weigh-in were related to hydration status. Participants were 31 taekwondo practitioners and wrestlers who performed evening weigh-in (EWI) the night before competition day and had thus time for rehydration, and 32 boxers and judokas conducting competition day morning weigh-in (MWI). In total, 32% were female. Urine specific gravity (USG) was measured by refractometry on the competition day’s first morning urine sample. Hypohydration was defined as USG ≥1.020 and serious hypohydration as USG > 1.030. Water intake was measured by means of dietary records. The prevalence of hypohydration was 89% in the morning of competition day. Serious hypohydration was also prevalent. This was found in over 50% of MWI athletes and in 42% of the EWI group. A higher water intake, from both fluids and solid foods, in the evening before competition day was not associated with a more favorable hydration status the following morning. In conclusion, neither weigh-in close to competition nor evening weigh-in with more time for rehydration seems to prevent hypohydration before competition.


Sign in / Sign up

Export Citation Format

Share Document