Physiological and Anthropometric Progression in an International Oarsman: A 15-Year Case Study

2014 ◽  
Vol 9 (4) ◽  
pp. 723-726 ◽  
Author(s):  
Jan Bourgois ◽  
Adelheid Steyaert ◽  
Jan Boone

Purpose:In this case study, a world-class rower was followed over a period of 15 y in which he evolved from junior to professional athlete.Methods:An incremental exercise test and a 2000-m ergometer test were performed each year in the peak period of the season starting at the age of 16 y. In addition, the training logs of 1 y each as a junior and a senior rower were recorded and analyzed.Results:Maximal oxygen uptake (VO2max), maximal power output (Pmax), and power output at 4 mmol/L blood lactate concentration increased until the age of 27 and then stabilized at 30 y at 6.0 ± 0.2 L/min, 536 ± 15 W, and 404 ± 22 W, respectively. At the age of 27–28 y the rower also had a career-best 2000-m ergometer test (5′58″) and on-water performance with a 4th place at the Olympic Games (2008) in Beijing and World Championships (2009). At the age of 23 y, the rower trained a total of 6091 km in 48 wk. Of the total training time, 15.4% consisted of general training practices, 23.4% resistance training, and 61.2% specific rowing training.Conclusion:The on-water performance in the World Championships and Olympic Games corresponded closely to the evolution in the rower’s physiological profile and 2000-m ergometer performance. The long-term build-up program resulted in an increase in the physiological parameters up to the age of 27 y and resulted in a 4th position at the 2008 Olympic Games at a body mass of only 86 kg.

Sports ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 55
Author(s):  
Adam J. Pinos ◽  
Elton M. Fernandes ◽  
Eric Viana ◽  
Heather M. Logan-Sprenger ◽  
David J. Bentley

Sprint swimming is a short duration, high intensity sport requiring a relatively greater contribution of energy from anaerobic metabolism. Understanding energy system utilization for the classification of a competitive swimmer (sprint or distance) may be useful for both training prescription and event specialization. The relationship between anaerobic swim ergometer testing and adolescent sprint swimming performance has not been investigated. The purpose of this study was to compare the performance and physiological responses during a maximal all-out ergometer test as well as the maximal anaerobic lactate test in a group of sprint vs. middle-distance specialized swimmers. Sixteen (n = 16) competitive swimmers (mean ± standard deviation (SD), age 16.8 ± 0.7 year; body mass 67.3 ± 9.8 kg) were categorized into two gender matched groups: sprint (n = 8) and middle-distance (n = 8). Each athlete performed (1) a 45 s swim ergometer maximal test to determine peak and mean power output (Watts (W)), (2) a MANLT test to determine peak and average velocity as well as the post-exercise lactate response, and (3) a 50 m swim time trial. The sprint group showed a higher mean (p = 0.026) and peak (p = 0.031) velocity during the MANLT. In addition, blood lactate concentration was significantly (p < 0.01) higher in the sprint vs. middle-distance trained group at 3 and 12 min after completion of the MANLT (3-min post 11.29 ± 2.32 vs. 9.55 ± 3.48 mmol/L; 12-min post 8.23 ± 2.28 vs. 7.05 ± 2.47 mmol/L). The power output during the 45 s all-out swimming ergometer test was higher in the sprint trained group. The results of this study demonstrate the anaerobic contribution to sprint swimming measured during an all-out dryland ergometer test.


2017 ◽  
Vol 38 (13) ◽  
pp. 1023-1028 ◽  
Author(s):  
Muriel Bourdin ◽  
Jean-Rene Lacour ◽  
Charles Imbert ◽  
Laurent Messonnier

AbstractThe present study investigated morphological and physiological factors of rowing ergometer performance over 2000 m (P2000, W) in 70 national and international level [27 lightweight (LW) and 43 heavyweight (HW)] female rowers. Maximal oxygen uptake (V̇O2max, L.min−1), maximal aerobic power (Pamax, W), power output corresponding to 4 mmol.L−1 blood lactate concentration expressed in absolute (PLa4, W) and relative to Pamax (PLa4%, %) values, peak power output (Ppeak, W), and rowing gross efficiency (RGE, %) were determined during an incremental rowing test. In the whole group, Ppeak was the best predictor of P2000 (r=0.89, p<0.001), as it was shown in men. PLa4 (r=0.87), V̇O2max (r=0.83), body mass (r=0.65), and height (r=0.64) were also significantly correlated with P2000 (p<0.001 for all). Ppeak was also the best predictor of P2000 when the two sub-groups LW and HW were considered separately. It was concluded that Ppeak is an overall index of physiological rowing capacity in groups of high-level LW and HW female rowers. The predictive value of Ppeak is similar to that of PLa4, but Ppeak presents the advantage of being obtained with a simple ergometer test without biological measurements.


Author(s):  
Jonpaul Nevin ◽  
Paul Smith

Purpose: The aim of the following case study was to evaluate the effectiveness of a 30-week concurrent strength and endurance training program designed to prepare a trained H4 male handcyclist (aged 28 y, bilateral, above knee amputee, and body mass 65.6 kg) for a 1407-km ultra-endurance handcycling challenge. Methods: This observational case study tracked selected physiological measures, training intensity distribution, and total training load over the course of a 30-week concurrent training protocol. Furthermore, the athlete’s performance profile during the ultra-endurance challenge was monitored with power output, cadence, speed, and heart rate recorded throughout. Results: Findings revealed considerable improvements in power output at a fixed blood lactate concentration of 4 mmol·L−1 (+25.7%), peak aerobic power output (+18.9%), power-to-mass ratio (+18.3%), relative peak oxygen uptake (+13.9%), gross mechanical efficiency (+4.6%), bench press 1-repetition maximum (+4.3%), and prone bench pull 1-repetition maximum (+14.9%). The athlete completed the 1407-km route in a new handcycling world record time of 89:55 hours. Average speed was 18.7 (2.1) km·h−1; cadence averaged 70.0 (2.6) rpm, while average power output was 67 (12) W. In terms of internal load, the athlete’s average heart rate was 111 (11) beats per minute. Conclusion: These findings demonstrate how a long-term concurrent strength and endurance training program can be used to optimize handcycling performance capabilities in preparation for an ultra-endurance cycling event. Knowledge emerging from this case study provides valuable information that can guide best practices with respect to handcycling training for ultra-endurance events.


2018 ◽  
Vol 28 (3) ◽  
pp. 274-278 ◽  
Author(s):  
Terri Graham-Paulson ◽  
Claudio Perret ◽  
Victoria Goosey-Tolfrey

Caffeine’s (CAF) ability to influence upper-body exercise endurance performance may be related to an individual’s training status. This case study therefore aimed to investigate the ergogenic effects of CAF dose on 20-km time trial (TT) performance of an elite male paratriathlete (wheelchair user; age = 46 years, body mass = 76.9 kg, body fat = 25.4%, and handcycling ). The athlete completed four 20-km handcycling TTs on a Cyclus II ergometer under controlled laboratory conditions following the ingestion of 2, 4, and 6 mg/kg CAF or placebo (PLA). Blood lactate concentration, power output, arousal, and ratings of perceived exertion were recorded. Ingestion of 2, 4, and 6 mg/kg CAF resulted in a 2%, 1.5%, and 2.7% faster TT compared with PLA (37:40 min:s). The participant’s blood lactate concentration increased throughout all trials and was greater during CAF compared with PLA. There were no obvious differences in ratings of perceived exertion between trials despite different performance times. Baseline arousal scores differed between PLA and 4 mg/kg CAF (1 = low), and 2 and 6 mg/kg CAF (3 = moderate). Arousal increased at each time point following the ingestion of 4 and 6 mg/kg CAF. The largest CAF dose resulted in a positive pacing strategy, which, when combined with an end spurt, resulted in the fastest TT. CAF improved 20-km TT performance of an elite male paratriathlete, which may be related to greater arousal and an increased power output for a given rating of perceived exertion.


1983 ◽  
Vol 55 (1) ◽  
pp. 218-224 ◽  
Author(s):  
N. McCartney ◽  
G. J. Heigenhauser ◽  
N. L. Jones

We studied maximal torque-velocity relationships and fatigue during short-term maximal exercise on a constant velocity cycle ergometer in 13 healthy male subjects. Maximum torque showed an inverse linear relationship to crank velocity between 60 and 160 rpm, and a direct relationship to thigh muscle volume measured by computerized tomography. Peak torque per liter thigh muscle volume (PT, N X ml-1) was related to crank velocity (CV, rpm) in the following equation: PT = 61.7 - 0.234 CV (r = 0.99). Peak power output was a parabolic function of crank velocity in individual subjects, but maximal power output was achieved at varying crank velocities in different subjects. Fiber type distribution was measured in the two subjects showing the greatest differences and demonstrated that a high proportion of type II fibers may be one factor associated with a high crank velocity for maximal power output. The decline in average power during 30 s of maximal effort was least at 60 rpm (23.7 +/- 4.6% of initial maximal power) and greatest at 140 rpm (58.7 +/- 6.5%). At 60 rpm the decline in power over 30 s was inversely related to maximal oxygen uptake (ml X min-1 X kg-1) (r = 0.69). Total work performed and plasma lactate concentration 3 min after completion of 30-s maximum effort were similar for each crank velocity.


2012 ◽  
Vol 7 (4) ◽  
pp. 375-381 ◽  
Author(s):  
Umberto Emanuele ◽  
Tamara Horn ◽  
Jachen Denoth

Purpose:The main aim of this study was to compare the freely chosen cadence (FCC) and the cadence at which the blood lactate concentration at constant power output is minimized (optimal cadence [Copt]). The second aim was to examine the effect of a concomitant change of road incline and body position on FCC, the maximal external power output (Pmax), and the corresponding Copt.Methods:FCC, Copt, and Pmax were analyzed under 2 conditions: cycling on level ground in a dropped position (LGDP) and cycling uphill in an upright position (UHUP). Seven experienced cyclists participated in this study. They cycled on a treadmill to test the 2 main hypotheses: Experienced cyclists would choose an adequate cadence close to Copt independent of the cycling condition, and FCC and Copt would be lower and Pmax higher for UHUP than with LGDP.Results:Most but not all experienced cyclists chose an adequate cadence close to Copt. Independent of the cycling condition, FCC and Copt were not statistically different. FCC (82.1 ± 11.1 and 89.3 ± 10.6 rpm, respectively) and Copt (81.5 ± 9.8 and 87.7 ± 10.9 rpm, respectively) were significantly lower and Pmax was significantly higher (2.0 ± 2.1%) for UHUP than for LGDP.Conclusion:Most experienced cyclists choose a cadence near Copt to minimize peripheral fatigue at a given power output independent of the cycling condition. Furthermore, it is advantageous to use a lower cadence and a more upright body position during uphill cycling.


2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


2020 ◽  
Vol 15 (7) ◽  
pp. 982-989
Author(s):  
Arthur H. Bossi ◽  
Cristian Mesquida ◽  
Louis Passfield ◽  
Bent R. Rønnestad ◽  
James G. Hopker

Purpose: Maximal oxygen uptake () is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. Methods: Fourteen cyclists ( 69.2 [6.6] mL·kg−1·min−1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. Results: Cyclists spent more time at during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation () was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with (r = .36, P = .002). Conclusions: In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.


2020 ◽  
Vol 15 (8) ◽  
pp. 1109-1116
Author(s):  
Mathias T. Vangsoe ◽  
Jonas K. Nielsen ◽  
Carl D. Paton

Purpose: Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. Methods: In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies—(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP—prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. Results: There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. Conclusions: Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.


2019 ◽  
Vol 14 (8) ◽  
pp. 1103-1109
Author(s):  
Tiago Turnes ◽  
Rafael Penteado dos Santos ◽  
Rafael Alves de Aguiar ◽  
Thiago Loch ◽  
Leonardo Trevisol Possamai ◽  
...  

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and  = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, , and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.


Sign in / Sign up

Export Citation Format

Share Document