Responses to Exercise in Normobaric Hypoxia: Comparison of Elite and Recreational Ski Mountaineers

2014 ◽  
Vol 9 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Raphael Faiss ◽  
Claudia von Orelli ◽  
Olivier Dériaz ◽  
Grégoire P. Millet

Purpose:Hypoxia is known to reduce maximal oxygen uptake (VO2max) more in trained than in untrained subjects in several lowland sports. Ski mountaineering is practiced mainly at altitude, so elite ski mountaineers spend significantly longer training duration at altitude than their lower-level counterparts. Since acclimatization in hypobaric hypoxia is effective, the authors hypothesized that elite ski mountaineers would exhibit a VO2max decrement in hypoxia similar to that of recreational ski mountaineers.Methods:Eleven elite (E, Swiss national team) and 12 recreational (R) ski mountaineers completed an incremental treadmill test to exhaustion in normobaric hypoxia (H, 3000 m, FIO2 14.6% ± 0.1%) and in normoxia (N, 485 m, FIO2 20.9% ± 0.0%). Pulse oxygen saturation in blood (SpO2), VO2max, minute ventilation, and heart rate were recorded.Results:At rest, hypoxic ventilatory response was higher (P < .05) in E than in R (1.4 ± 1.9 vs 0.3 ± 0.6 L · min−1 · kg−1). At maximal intensity, SpO2 was significantly lower (P < .01) in E than in R, both in N (91.1% ± 3.3% vs 94.3% ± 2.3%) and in H (76.4% ± 5.4% vs 82.3% ± 3.5%). In both groups, SpO2 was lower (P < .01) in H. Between N and H, VO2max decreased to a greater extent (P < .05) in E than in R (–18% and –12%, P < .01). In E only, the VO2max decrement was significantly correlated with the SpO2 decrement (r = .74, P < .01) but also with VO2max measured in N (r = .64, P < .05).Conclusion:Despite a probable better acclimatization to altitude, VO2max was more reduced in E than in R ski mountaineers, confirming previous results observed in lowlander E athletes.

2018 ◽  
Vol 3 (57) ◽  
Author(s):  
Roma Aleksandravičienė ◽  
Arvydas Stasiulis

The aim of this study was to characterize heart rate (HR), oxygen uptake and pulmonary ventilation during competitiveaerobic gymnastics routine in a group of elite women athletes. The subjects were Lithuanian aerobic women gymnasts,members of national team (21.6, 4.4) years old). All subjects performed a maximal incremental treadmill test in thelaboratory and competitive aerobic gymnastics exercises in group category. Heart rate was continuously recordedusing the heart rate measurement equipment Polar ACCUREX-Plus. During the incremental treadmill test HRdeflection point and other parameters of aerobic capacity were determined from the relationship of HR to runningspeed. During the aerobic gymnastics routine pulmonary gas exchange parameters and heart rate were continuouslymeasured using the telemetric equipment Cortex 3B. The changes of HR, minute ventilation and oxygen uptake wereanalyzed by adopting monoexponential function.The results showed that HR values during the competitive aerobic gymnastics routine were higher than HR break pointwhich is near the lactate accumulation threshold (reaching 95.2 (4.2)% of maximal HR). Oxygen uptake duringcompetitive routine reached 81.3 (5.8)% of maximal oxygen uptake. Rather high blood lactate accumulation(7.50 mmol / l) at the third minute after exercise show the high intensity of exercise. These results allows us to considerthat aerobic gymnastics is a sport with high cardiorespiratory and metabolic demands, in which aerobic and anaerobicsources are intensely activated.Keywords: aerobic gymnastics, aerobic capacity, pulmonary gas exchange, lactate, heart rate deflection point.


2014 ◽  
Vol 116 (7) ◽  
pp. 945-952 ◽  
Author(s):  
Normand A. Richard ◽  
Inderjeet S. Sahota ◽  
Nadia Widmer ◽  
Sherri Ferguson ◽  
A. William Sheel ◽  
...  

We examined the control of breathing, cardiorespiratory effects, and the incidence of acute mountain sickness (AMS) in humans exposed to hypobaric hypoxia (HH) and normobaric hypoxia (NH), and under two control conditions [hypobaric normoxia (HN) and normobaric normoxia (NN)]. Exposures were 6 h in duration, and separated by 2 wk between hypoxic exposures and 1 wk between normoxic exposures. Before and after exposures, subjects ( n = 11) underwent hyperoxic and hypoxic Duffin CO2 rebreathing tests and a hypoxic ventilatory response test (HVR). Inside the environmental chamber, minute ventilation (V̇e), tidal volume (Vt), frequency of breathing ( fB), blood oxygenation, heart rate, and blood pressure were measured at 5 and 30 min and hourly until exit. Symptoms of AMS were evaluated using the Lake Louise score (LLS). Both the hyperoxic and hypoxic CO2 thresholds were lower after HH and NH, whereas CO2 sensitivity was increased after HH and NH in the hypoxic test and after NH in the hyperoxic test. Values for HVR were similar across the four exposures. No major differences were observed for V̇e or any other cardiorespiratory variables between NH and HH. The LLS was greater in AMS-susceptible than in AMS-resistant subjects; however, LLS was alike between HH and NH. In AMS-susceptible subjects, fB correlated positively and Vt negatively with the LLS. We conclude that 6 h of hypoxic exposure is sufficient to lower the peripheral and central CO2 threshold but does not induce differences in cardiorespiratory variables or AMS incidence between HH and NH.


1993 ◽  
Vol 5 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Hazzaa M. Al-Hazzaa ◽  
Mohammed A. Sulaiman

The present study examined the relationship between maximal oxygen uptake (V̇O2max) and daily physical activity in a group of 7- to 12-year-old boys. V̇O2max was assessed through the incremental treadmill test using an open circuit system. Physical activity level was obtained from heart rate telemetry outside of school time for 8 hrs during weekdays and during 40 min of physical education classes. The findings indicated that the absolute value of V̇O2max increased with age, while relative to body weight it remained almost the same across age, with a mean of 48.4 ml · kg−1 · min−1. Moreover, heart rate telemetry showed that the boys spent a limited amount of time on activities that raise the heart rate to a level above 160 bpm (an average of 1.9%). In addition, V̇O2max was found to be significantly related to the percentage of time spent at activity levels at or above a heart rate of 140 bpm, but not with activity levels at or above a heart rate of 160 bpm.


1965 ◽  
Vol 20 (3) ◽  
pp. 509-513 ◽  
Author(s):  
R. G. Glassford ◽  
G. H. Y. Baycroft ◽  
A. W. Sedgwick ◽  
R. B. J. Macnab

Twenty-four male subjects aged 17–33 were given three direct tests of maximal oxygen uptake and one indirect test. The direct tests were those of Mitchell, Sproule, and Chapman (treadmill); Taylor, Buskirk, and Henschel (treadmill); and Åstrand (bicycle ergometer). The indirect test was the Åstrand-Ryhming nomogram (bicycle ergometer) employing heart rate response to submaximal work. In addition, the Johnson, Brouha, and Darling physical fitness test was administered. The two treadmill tests and the indirect test yielded significantly higher mean values than did the direct bicycle test. However no other significant differences in mean values occurred. Correlation coefficients between the various oxygen uptake tests as well as the fitness test were all found to be significant (.62–.83), i.e., greater than zero. No correlation obtained proved to be significantly greater than any other. The results indicate that direct treadmill tests, employing greater muscle mass, yield higher maximal oxygen uptake values (8%) than does the direct bicycle ergometer test. The Åstrand-Ryhming nomogram appears to produce a good estimation of maximal oxygen uptake, in a population unaccustomed to cycling. erobic capacity; exercise; heart rate Submitted on September 17, 1964


2002 ◽  
Vol 93 (4) ◽  
pp. 1498-1505 ◽  
Author(s):  
Nathan E. Townsend ◽  
Christopher J. Gore ◽  
Allan G. Hahn ◽  
Michael J. McKenna ◽  
Robert J. Aughey ◽  
...  

This study determined whether “living high-training low” (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8–10 h/day overnight in normobaric hypoxia (∼2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (ΔV˙e/ΔSpO2 , whereV˙e is minute ventilation and SpO2 is blood O2 saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal Pco 2(Pet CO2 ) and V˙e were measured during room air breathing at rest. HVR (l · min−1 · %−1) was higher ( P < 0.05) in LHTLc than in Con at N1 (0.56 ± 0.32 vs. 0.28 ± 0.16), N3 (0.69 ± 0.30 vs. 0.36 ± 0.24), N10 (0.79 ± 0.36 vs. 0.34 ± 0.14), N15 (1.00 ± 0.38 vs. 0.36 ± 0.23), and Post (0.79 ± 0.37 vs. 0.36 ± 0.26). HVR at N15 was higher ( P < 0.05) in LHTLi (0.67 ± 0.33) than in Con and in LHTLc than in LHTLi. Pet CO2 was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia ( P < 0.05). No significant differences were observed for V˙e at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases Pet CO2 in normoxia, without change inV˙e. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.


1987 ◽  
Vol 63 (3) ◽  
pp. 1019-1024 ◽  
Author(s):  
R. L. Bjurstrom ◽  
R. B. Schoene

Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 2 (2021) ◽  
pp. 28-39
Author(s):  
Dimitar Avramov ◽  

The aim of this study was to determine aerobic fitness through the VO2max treadmill test of elite Bulgarian taekwondo players with international results, and to determine whether the aerobic system had an effect upon the sports result in taekwondo. Fourteen elite taekwondo athletes, members of the Bulgarian national team (8 male and 6 female) were tested using a continuous progressive treadmill test. Physiological characteristics such as maximal oxygen uptake(VO2max), blood lactate and heart rate were measured. The male athletes recorded 58.2±3.4 ml kg–1 min–1 and the female 46.0±2.8 ml kg–1 min–1. The lactate level reached its highest at the 6’ after the VO2max with results for the males of 11.5±3.7 (mmol l-1) and 9.9±4.1 (mmol l-1) for the females respectively. A comparison between our results, regarding VO2max and previously reported was made using the One-way Anova for independent samples. It showed no significant difference between the male subjects (58.2±3.4 versus 60.7±3.3 ml kg(-1) min(-1), p>.05) and significant difference between the female ones (46.0±2.8 versus 49.8±2.8 ml kg(-1) min(-1), p<.05). Investigated also was the number of kicks executed by the winner of -49 kg weight category and her direct opponents during the 2019 Grand Prix Sofia. It was discovered that the winner kicked an average of 86.25 times per match and her kicks during the Grand Prix Sofia accumulated to 390 in total. It is our conclusion that the aerobic fitness does not play a significant role in taekwondo.


2014 ◽  
Vol 61 (2) ◽  
Author(s):  
Piotr Gronek ◽  
Joanna Holdys ◽  
Jakub Kryściak ◽  
Dariusz Wieliński ◽  
Ryszard Słomski

Physical fitness is a trait determined by multiple genes, and its genetic basis is modified by numerous environmental factors. The present study examines the effects of the (CA)n tandem repeats polymorphism in IGFI gene and SNP Alw21I restriction site -202 A>C polymorphism in IGF1BP3 on VO2max--a physiological index of aerobic capacity of high heritability. The study sample consisted of 239 (154 male and 85 female) students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. An association was found between -202 A/C polymorphism of IGFBP3 gene with VO2max in men. Higher VO2max values were attained by men with CC genotype, especially male athletes practicing endurance sports and sports featuring energy metabolism of aerobic/anaerobic character. A statistically significant influence of allele 188 and genotype 188/188 of tandem repeats (CA)n polymorphism of IGF1 gene on VO2max was found in women. Also, lower values of maximal oxygen uptake were noted in individuals with allele 186 or genotype 186/186, and higher VO2max values in athletes with allele 194.


2006 ◽  
Vol 31 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Adrian W. Midgley ◽  
Lars R. McNaughton ◽  
Sean Carroll

This study investigated the utility of a verification phase for increasing confidence that a “true” maximal oxygen uptake had been elicited in 16 male distance runners (mean age (±SD), 38.7  (± 7.5 y)) during an incremental treadmill running test continued to volitional exhaustion. After the incremental test subjects performed a 10 min recovery walk and a verification phase performed to volitional exhaustion at a running speed 0.5 km·h–1 higher than that attained during the last completed stage of the incremental phase. Verification criteria were a verification phase peak oxygen uptake ≤ 2% higher than the incremental phase value and peak heart rate values within 2 beats·min–1 of each other. Of the 32 tests, 26 satisfied the oxygen uptake verification criterion and 23 satisfied the heart rate verification criterion. Peak heart rate was lower (p = 0.001) during the verification phase than during the incremental phase, suggesting that the verification protocol was inadequate in eliciting maximal values in some runners. This was further supported by the fact that 7 tests exhibited peak oxygen uptake values over 100 mL·min–1 (≥ 3%) lower than the peak values attained in the incremental phase. Further research is required to improve the verification procedure before its utility can be confirmed.


1998 ◽  
Vol 85 (1) ◽  
pp. 129-132 ◽  
Author(s):  
David Gozal

In humans, the hypoxic ventilatory response (HVR) is augmented when preceded by a short hyperoxic exposure (Y. Honda, H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. J. Appl. Physiol. 81: 1627–1632, 1996). To examine whether neuronal nitric oxide synthase (nNOS) is involved in such hyperoxia-induced HVR potentiation, 17 male Sprague-Dawley adult rats underwent hypoxic challenges (10% O2-5% CO2-balance N2) preceded either by 10 min of room air (−O2) or of 100% O2(+O2). At least 48 h later, similar challenges were performed after the animals received the selective nNOS inhibitor 7-nitroindazole (25 mg/kg ip). In −O2 runs, minute ventilation (V˙e) increased from 121.3 ± 20.5 (SD) ml/min in room air to 191.7 ± 23.8 ml/min in hypoxia ( P< 0.01). After +O2,V˙e increased from 114.1 ± 19.8 ml/min in room air to 218.4 ± 47.0 ml/min in hypoxia (+O2 vs. −O2: P < 0.005, ANOVA). After 7-nitroindazole administration, HVR was not affected in the −O2 treatment group withV˙e increasing from 113.7 ± 17.8 ml/min in room air to 185.8 ± 35.0 ml/min in hypoxia ( P < 0.01). However, HVR potentiation in +O2-exposed animals was abolished (111.8 ± 18.0 ml/min in room air to 184.1 ± 35.6 ml/min in hypoxia; +O2 vs. −O2: P not significant). We conclude that in the conscious rat nNOS activation mediates essential components of the HVR potentiation elicited by a previous short hyperoxic exposure.


Sign in / Sign up

Export Citation Format

Share Document