scholarly journals Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications

2017 ◽  
Vol 12 (s2) ◽  
pp. S2-9-S2-17 ◽  
Author(s):  
Iñigo Mujika

Training quantification is basic to evaluate an endurance athlete’s responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes’ performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.

2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


2010 ◽  
Vol 20 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Nicholas Gant ◽  
Ajmol Ali ◽  
Andrew Foskett

Carbohydrate and caffeine are known to independently improve certain aspects of athletic performance. However, less is understood about physiological and performance outcomes when these compounds are coingested in a rehydration and carbohydrate-replacement strategy. The aim of this study was to examine the influence of adding a moderate dose of caffeine to a carbohydrate solution during prolonged soccer activity. Fifteen male soccer players performed two 90-min intermittent shuttle-running trials. They ingested a carbohydrate-electrolyte solution (CON) providing a total of 1.8 g/kg body mass (BM) of carbohydrate or a similar solution with added caffeine (CAF; 3.7 mg/kg BM). Solutions were ingested 1 hr before exercise and every 15 min during the protocol. Soccer passing skill and countermovement-jump height (CMJ) were quantified before exercise and regularly during exercise. Sprinting performance, heart rate, blood lactate concentration (La) and the subjective experiences of participants were measured routinely. Mean 15-m sprint time was faster during CAF (p = .04); over the final 15 min of exercise mean sprint times were CAF 2.48 ± 0.15 s vs. CON 2.59 ± 0.2 s. Explosive leg power (CMJ) was improved during CAF (52.9 ± 5.8 vs. CON 51.7 ± 5.7 cm, p = .03). Heart rate was elevated throughout CAF, and ratings of pleasure were significantly enhanced. There were no significant differences in passing skill, rating of perceived exertion, La, or body-mass losses between trials. The addition of caffeine to the carbohydrate-electrolyte solution improved sprinting performance, countermovement jumping, and the subjective experiences of players. Caffeine appeared to offset the fatigue-induced decline in self-selected components of performance.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ibrahim Ouergui ◽  
Emerson Franchini ◽  
Hamdi Messaoudi ◽  
Hamdi Chtourou ◽  
Anissa Bouassida ◽  
...  

This study investigated the effect of area sizes (4 × 4, 6 × 6, and 8 × 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios × three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 × 4, 6 × 6, and 8 × 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 × 4 m elicited lower HRmean values compared with 6 × 6 m (d = −0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p &lt; 0.001). For [La]post, 4 × 4 m area size induced higher values than 6 × 6 m (d = 0.99 [moderate], p &lt; 0.001) and 8 × 8 m (d = 0.89 [moderate], p &lt; 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p &lt; 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F(1, 56) =30.532, p &lt; 0.001; post-hoc: d = 1.27 [large], p &lt; 0.001] with higher values for 4 × 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F(1, 56) = 4.419, p = 0.04; post-hoc: d = −0.46 [small], p = 0.04] and 4 × 4 m induced lower values in comparison with 6 × 6 m (d = −1.56 [large], p = 0.001) and CG (d = −0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.


2018 ◽  
Vol 13 (10) ◽  
pp. 1324-1330
Author(s):  
Enzo Hollville ◽  
Vincent Le Croller ◽  
Yoshihiro Hirasawa ◽  
Rémi Husson ◽  
Giuseppe Rabita ◽  
...  

Purpose: To evaluate the effect of multiple sets of repeated-sprint-ability (RSA)-induced fatigue on subsequent passing-skill performance in field hockey players. Methods: A total of 10 elite U-21 (under-21) male field hockey players performed 5 sets of a combination of RSA test (6 × 20 m, 20 s of passive recovery) followed by a 1-min passing-skill test (passing reception with subsequent passes at a predesigned target). Data on fastest sprint time and cumulated sprint time for RSA test; total number of balls played, targeted, and passing accuracy (number of balls targeted/total number of balls played) for passing-skill test; heart rate (HR), blood lactate concentration (BLa), and rating of perceived exertion (RPE)  were collected throughout the protocol. Results: RSA performance was significantly impaired from set 1 to set 5 (fastest sprint time +4.1%, P < .001; cumulated sprint time +2.3%, P < .01). For a similar average number of balls played (12.8 [1.4]) during each set, number of balls targeted (−1.7%, P < .05) and passing accuracy (−3.1%, P < .05) decreased up to the third set before reimproving over the last 2 sets. Psychophysiological responses (HR, BLa, and RPE) progressively increased (P < .05) toward protocol cessation. The decrease in passing accuracy with increasing RSA cumulated sprint time was fitted to a 2nd-order polynomial function (r2 = .94, P < .05). Conclusion: Multiple-set RSA-induced fatigue was accompanied by passing-skill adjustment variation, suggesting a complex interaction between physiological and psychological/cognitive function to preserve passing skill under fatigued condition.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


2012 ◽  
Vol 302 (8) ◽  
pp. E972-E978 ◽  
Author(s):  
Luigi Di Luigi ◽  
Paolo Sgrò ◽  
Carlo Baldari ◽  
Maria Chiara Gallotta ◽  
Gian Pietro Emerenziani ◽  
...  

Phosphodiesterase type 5 inhibitors may influence human physiology, health, and performance by also modulating endocrine pathways. We evaluated the effects of a 2-day tadalafil administration on adenohypophyseal and adrenal hormone adaptation to exercise in humans. Fourteen healthy males were included in a double-blind crossover trial. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day with a 36-h interval) before a maximal exercise was performed. After a 2-wk washout, the volunteers were crossed over. Blood samples were collected at −30 and −15 min and immediately before exercise, immediately after, and during recovery (+15, +30, +60, and +90 min) for adrenocorticotropin (ACTH), β-endorphin, growth hormone (GH), prolactin, cortisol (C), corticosterone, dehydroepiandrosterone-sulfate (DHEAS), and cortisol binding globulin (CBG) assays. C-to-CBG (free cortisol index, FCI) and DHEAS-to-C ratios were calculated. Exercise intensity, perceived exertion rate, O2 consumption, and CO2 and blood lactate concentration were evaluated. ACTH, GH, C, corticosterone, and CBG absolute concentrations and/or areas under the curve (AUC) increased after exercise after both placebo and tadalafil. Exercise increased DHEAS only after placebo. Compared with placebo, tadalafil administration reduced the ACTH, C, corticosterone, and FCI responses to exercise and was associated with higher β-endorphin AUC and DHEAS-to-C ratio during recovery, without influencing cardiorespiratory and performance parameters. Tadalafil reduced the activation of the hypothalamus-pituitary-adrenal axis during exercise by probably influencing the brain's nitric oxide- and cGMP-mediated pathways. Further studies are necessary to confirm our results and to identify the involved mechanisms, possible health risks, and potential clinical uses.


2010 ◽  
Vol 108 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Alexis R. Mauger ◽  
Andrew M. Jones ◽  
Craig A. Williams

To establish whether acetaminophen improves performance of self-paced exercise through the reduction of perceived pain, 13 trained male cyclists performed a self-paced 10-mile (16.1 km) cycle time trial (TT) following the ingestion of either acetaminophen (ACT) or a placebo (PLA), administered in randomized double-blind design. TT were completed in a significantly faster time ( t12 = 2.55, P < 0.05) under the ACT condition (26 min 15 s ± 1 min 36 s vs. 26 min 45 s ± 2 min 2 s). Power output (PO) was higher during the middle section of the TT in the ACT condition, resulting in a higher mean PO ( P < 0.05) (265 ± 12 vs. 255 ± 15 W). Blood lactate concentration (B[La]) and heart rate (HR) were higher in the ACT condition (B[La] = 6.1 ± 2.9 mmol/l; HR = 87 ± 7%max) than in the PLA condition (B[La] = 5.1 ± 2.6 mmol/l; HR = 84 ± 9%max) ( P < 0.05). No significant difference in rating of perceived exertion (ACT = 15.5 ± 0.2; PLA = 15.7 ± 0.2) or perceived pain (ACT = 5.6 ± 0.2; PLA = 5.5 ± 0.2) ( P > 0.05) was observed. Using acetaminophen, participants cycled at a higher mean PO, with an increased HR and B[La], but without changes in perceived pain or exertion. Consequently, completion time was significantly faster. These findings support the notion that exercise is regulated by pain perception, and increased pain tolerance can improve exercise capacity.


Sign in / Sign up

Export Citation Format

Share Document