scholarly journals Influence of Faster and Slower Recovery-Profile Classifications, Self-Reported Sleep, Acute Training Load, and Phase of the Microcycle on Perceived Recovery in Futsal Players

2020 ◽  
Vol 15 (5) ◽  
pp. 648-653 ◽  
Author(s):  
Carolina F. Wilke ◽  
Samuel P. Wanner ◽  
Weslley H.M. Santos ◽  
Eduardo M. Penna ◽  
Guilherme P. Ramos ◽  
...  

Purpose: To determine whether daily perceived recovery is explained from a multifactorial single-session classification of recovery (ie, faster vs slower) or other circumstantial factors (ie, previous training load, self-reported sleep, or phase of the microcycle). Methods: Nineteen elite male futsal players were initially allocated to a recovery-classification group (faster recovery, slower physiological, or slower perceptual) based on previous research using a multifactorial cluster-analysis technique. During 4 ensuing weeks of preseason, training loads were monitored via player load, training impulse, and session rating of perceived exertion. Before each day’s training, players reported their perception of recovery (Total Quality of Recovery scale [TQR]) and the number of hours and perceived quality of sleep the night prior. A hierarchical linear mixed model was used to analyze the effect of the different recovery profiles, training load, sleep, and phase of the microcycle (ie, start, middle, end) on daily TQR. Results: The recovery classification of players (P = .20), training load (training impulse, P = .32; player load, P = .23; session rating of perceived exertion, P = .46), and self-reported hours slept the night before (P = .45) did not significantly influence TQR. However, perceived sleep quality (P < .01) and phase of the microcycle (P < .01) were significantly associated with TQR (r2 = .41). Conclusions: Neither recovery classification nor prior training load influenced perceived recovery during the preseason. However, higher TQR was evident with better self-reported sleep quality, whereas lower values were associated with phases of the training week.

Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


2019 ◽  
Vol 14 (10) ◽  
pp. 1338-1343
Author(s):  
Thiago S. Duarte ◽  
Danilo L. Alves ◽  
Danilo R. Coimbra ◽  
Bernardo Miloski ◽  
João C. Bouzas Marins ◽  
...  

Purpose: To analyze the technical and tactical training load in professional volleyball players, using subjective internal training load (session rating of perceived exertion  [SRPE]) and objective internal training load (training impulse of the heart rate [HR]) and the relationship between them. Methods: The sample was composed of 15 male professional volleyball players. They were monitored during 37 training sessions that included both technical (n = 23) and tactical (n = 14) training. Technical and training load was calculated using SRPE and training impulse of the HR. Results: Significant correlations were found between the methods in tactical (r = .616) and technical training (r = −.414). Furthermore, it was noted that technical training occurs up to 80% of HRmax (zone 3) and tactical training between 70% and 90% of HRmax (zones 3–4). Conclusions: The training impulse of the HR method has proved to be effective for training-load control during tactical training. However, it was limited compared with technical training. Thus, the use of SRPE is presented as a more reliable method in the different types of technical training in volleyball.


2020 ◽  
Vol 15 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Teun van Erp ◽  
Dajo Sanders ◽  
Jos J. de Koning

Purpose: To describe the training intensity and load characteristics of professional cyclists using a 4-year retrospective analysis. Particularly, this study aimed to describe the differences in training characteristics between men and women professional cyclists. Method: For 4 consecutive years, training data were collected from 20 male and 10 female professional cyclists. From those training sessions, heart rate, rating of perceived exertion, and power output (PO) were analyzed. Training intensity distribution as time spent in different heart rate and PO zones was quantified. Training load was calculated using different metrics such as Training Stress Score, training impulse, and session rating of perceived exertion. Standardized effect size is reported as Cohen’s d. Results: Small to large higher values were observed for distance, duration, kilojoules spent, and (relative) mean PO in men’s training (d = 0.44–1.98). Furthermore, men spent more time in low-intensity zones (ie, zones 1 and 2) compared with women. Trivial differences in training load (ie, Training Stress Score and training impulse) were observed between men’s and women’s training (d = 0.07–0.12). However, load values expressed per kilometer were moderately (d = 0.67–0.76) higher in women compared with men’s training. Conclusions: Substantial differences in training characteristics exist between male and female professional cyclists. Particularly, it seems that female professional cyclists compensate their lower training volume, with a higher training intensity, in comparison with male professional cyclists.


2017 ◽  
Vol 12 (6) ◽  
pp. 796-802 ◽  
Author(s):  
Annie C. Jeffries ◽  
Lee Wallace ◽  
Aaron J. Coutts

Purpose:To describe the training demands of contemporary dance and determine the validity of using the session rating of perceived exertion (sRPE) to monitor exercise intensity and training load in this activity. In addition, the authors examined the contribution of training (ie, accelerometry and heart rate) and non-training-related factors (ie, sleep and wellness) to perceived exertion during dance training.Methods:Training load and ActiGraphy for 16 elite amateur contemporary dancers were collected during a 49-d period, using heart-rate monitors, accelerometry, and sRPE. Within-individual correlation analysis was used to determine relationships between sRPE and several other measures of training intensity and load. Stepwise multiple regressions were used to determine a predictive equation to estimate sRPE during dance training.Results:Average weekly training load was 4283 ± 2442 arbitrary units (AU), monotony 2.13 ± 0.92 AU, strain 10677 ± 9438 AU, and average weekly vector magnitude load 1809,707 ± 1015,402 AU. There were large to very large within-individual correlations between training-load sRPE and various other internal and external measures of intensity and load. The stepwise multiple-regression analysis also revealed that 49.7% of the adjusted variance in training-load sRPE was explained by peak heart rate, metabolic equivalents, soreness, motivation, and sleep quality (y = –4.637 + 13.817%HRpeak + 0.316 METS + 0.100 soreness + 0.116 motivation – 0.204 sleep quality).Conclusion:The current findings demonstrate the validity of the sRPE method for quantifying training load in dance, that dancers undertake very high training loads, and a combination of training and nontraining factors contribute to perceived exertion in dance training.


Author(s):  
Niklas D. Neumann ◽  
Nico W. Van Yperen ◽  
Jur J. Brauers ◽  
Wouter Frencken ◽  
Michel S. Brink ◽  
...  

Purpose: The study of load and recovery gained significant interest in the last decades, given its important value in decreasing the likelihood of injuries and improving performance. So far, findings are typically reported on the group level, whereas practitioners are most often interested in applications at the individual level. Hence, the aim of the present research is to examine to what extent group-level statistics can be generalized to individual athletes, which is referred to as the “ergodicity issue.” Nonergodicity may have serious consequences for the way we should analyze, and work with, load and recovery measures in the sports field. Methods: The authors collected load, that is, rating of perceived exertion × training duration, and total quality of recovery data among youth male players of a professional football club. This data were collected daily across 2 seasons and analyzed on both the group and the individual level. Results: Group- and individual-level analysis resulted in different statistical outcomes, particularly with regard to load. Specifically, SDs within individuals were up to 7.63 times larger than SDs between individuals. In addition, at either level, the authors observed different correlations between load and recovery. Conclusions: The results suggest that the process of load and recovery in athletes is nonergodic, which has important implications for the sports field. Recommendations for training programs of individual athletes may be suboptimal, or even erroneous, when guided by group-level outcomes. The utilization of individual-level analysis is key to ensure the optimal balance of individual load and recovery.


2014 ◽  
Vol 9 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Dan Weaving ◽  
Phil Marshall ◽  
Keith Earle ◽  
Alan Nevill ◽  
Grant Abt

Purpose:This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.Methods:Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.Results:Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.Conclusions:In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.


Author(s):  
Carl Foster ◽  
Daniel Boullosa ◽  
Michael McGuigan ◽  
Andrea Fusco ◽  
Cristina Cortis ◽  
...  

The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.


Author(s):  
Alice Iannaccone ◽  
Andrea Fusco ◽  
Antanas Skarbalius ◽  
Audinga Kniubaite ◽  
Cristina Cortis ◽  
...  

Purpose: Assessing the relationship between external load (EL) and internal load (IL) in youth male beach handball players. Methods: A total of 11 field players from the Lithuanian U17 beach handball team were monitored across 14 training sessions and 7 matches. The following EL variables were assessed by means of inertial movement units: PlayerLoad™, accelerations, decelerations, changes of direction, and jumps and total of inertial movements. IL was assessed objectively and subjectively using the summated heart rate zones and training load calculated via session rating of perceived exertion, respectively. Spearman correlations (ρ) were used to assess the relationship between EL and IL. The interindividual variability was investigated using linear mixed models with random intercepts with IL as dependent variable, PlayerLoad™ as the independent variable, and players as random effect. Results: The lowest significant (P < .05) relationship was for high jumps with objective (ρ = .56) and subjective (ρ = .49) IL. The strongest relationship was for PlayerLoad™ with objective (ρ = .9) and subjective (ρ = .84) IL. From the linear mixed model, the estimated SD of the random intercepts was 19.78 arbitrary units (95% confidence interval, 11.75–33.31); SE = 5.26, and R2 = .47 for the objective IL and 6.03 arbitrary units (95% confidence interval, 0.00–7330.6); SE = 21.87; and R2 = .71 for the subjective IL. Conclusions: Objective and subjective IL measures can be used as a monitoring tool when EL monitoring is not possible. Coaches can predict IL based on a given EL by using the equations proposed in this study.


2020 ◽  
Vol 24 (4) ◽  
pp. 175-182
Author(s):  
Valeriya G. Volkova ◽  
Amanda M. Black ◽  
Sarah J. Kenny

Training load has been identified as a risk factor for musculoskeletal injury in sport, but little is known about the effects of training load in dance. The purpose of this study was to describe adolescent dancers' internal training load (ITL) and compare objective and subjective measures of ITL using heart rate (HR) training impulse methods and session Rating of Perceived Exertion (sRPE), respectively. Fifteen female elite adolescent ballet dancers at a vocational dance school volunteered to participate in the study. Internal training load data using HR and sRPE were collected over 9 days of multiple technique classes at the midpoint of the dancers' training year. Heart rate data were quantified using Edwards' training impulse (ETRIMP) and Banister's training impulse (BTRIMP), and sRPE was estimated from the modified Borg 0 to 10 scale and class duration. Descriptive statistics (median [M], and interquartile range [IQR]) were determined in arbitrary units (AU), and were as follows for all classes combined: ETRIMP: M = 134 AU (IQR = 79 to 244 AU); BTRIMP: M = 67 AU (IQR = 38 to 109); sRPE: M = 407 AU (IQR = 287 to 836 AU). The association and agreement between objective and subjective ITL measures in ballet and pointe class was assessed using Spearman correlations (rs) and adjusted Bland-Altman 95% limits of agreement (LOA), respectively, with alpha set at 0.05. A significant moderate positive correlation was found between ETRIMP and BTRIMP in pointe class (rρ = 0.8000, p = 0.0031). The mean difference (LOA) between ETRIMP and BTRIMP was 121 AU (33 to 210 AU) in ballet and 43 AU (-3 to 88 AU) in pointe. It is concluded that some, but not all, measures of ITL in elite adolescent ballet dancers are comparable. Additional research is needed to examine the utilization of ITL measures for evaluating dance-related injury risk, as well as the application of ITL to inform the development of effective injury prevention strategies for this high-risk population.


2019 ◽  
Vol 14 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Teun van Erp ◽  
Carl Foster ◽  
Jos J. de Koning

Purpose: The relationship between various training-load (TL) measures in professional cycling is not well explored. This study investigated the relationship between mechanical energy spent (in kilojoules), session rating of perceived exertion (sRPE), Lucia training impulse (LuTRIMP), and training stress score (TSS) in training, races, and time trials (TT). Methods: For 4 consecutive years, field data were collected from 21 professional cyclists and categorized as being collected in training, racing, or TTs. Kilojoules (kJ) spent, sRPE, LuTRIMP, and TSS were calculated, and the correlations between the various TLs were made. Results: 11,655 sessions were collected, from which 7596 sessions had heart-rate data and 5445 sessions had an RPE score available. The r between the various TLs during training was almost perfect. The r between the various TLs during racing was almost perfect or very large. The r between the various TLs during TTs was almost perfect or very large. For all relationships between TSS and 1 of the other measurements of TL (kJ spent, sRPE, and LuTRIMP), a significant different slope was found. Conclusion: kJ spent, sRPE, LuTRIMP, and TSS all have a large or almost perfect relationship with each other during training, racing, and TTs, but during racing, both sRPE and LuTRIMP have a weaker relationship with kJ spent and TSS. Furthermore, the significant different slope of TSS vs the other measurements of TL during training and racing has the effect that TSS collected in training and road races differs by 120%, whereas the other measurements of TL (kJ spent, sRPE, and LuTRIMP) differ by only 73%, 67%, and 68%, respectively.


Sign in / Sign up

Export Citation Format

Share Document