scholarly journals Effect of Individual Environmental Heat-Stress Variables on Training and Recovery in Professional Team Sport

2020 ◽  
Vol 15 (10) ◽  
pp. 1393-1399
Author(s):  
Fergus K. O’Connor ◽  
Steven E. Stern ◽  
Thomas M. Doering ◽  
Geoffrey M. Minett ◽  
Peter R. Reaburn ◽  
...  

Context: Exercise in hot environments increases body temperature and thermoregulatory strain. However, little is known regarding the magnitude of effect that ambient temperature (Ta), relative humidity (RH), and solar radiation individually have on team-sport athletes. Purpose: To determine the effect of these individual heat-stress variables on team-sport training performance and recovery. Methods: Professional Australian Rules Football players (N = 45) undertook 8-wk preseason training producing a total of 579 outdoor field-based observations with Ta, RH, and solar radiation recorded at every training session. External load (distance covered, in m/min; percentage high-speed running [%HSR] >14.4 km/h) was collected via a global positioning system. Internal load (ratings of perceived exertion and heart rate) and recovery (subjective ratings of well-being and heart-rate variability [root mean square of the successive differences]) were monitored throughout the training period. Mixed-effects linear models analyzed relationships between variables using standardized regression coefficients. Results: Increased solar-radiation exposure was associated with reduced distance covered (−19.7 m/min, P < .001), %HSR (−10%, P < .001) during training and rMSSD 48 h posttraining (−16.9 ms, P = .019). Greater RH was associated with decreased %HSR (−3.4%, P = .010) but increased percentage duration >85% HRmax (3.9%, P < .001), ratings of perceived exertion (1.8 AU, P < .001), and self-reported stress 24 h posttraining (−0.11 AU, P = .002). In contrast, higher Ta was associated with increased distance covered (19.7 m/min, P < .001) and %HSR (3.5%, P = .005). Conclusions: The authors show the importance of considering the individual factors contributing to thermal load in isolation for team-sport athletes and that solar radiation and RH reduce work capacity during team-sport training and have the potential to slow recovery between sessions.

2017 ◽  
Vol 20 (3) ◽  
pp. 290-295 ◽  
Author(s):  
Shaun J. McLaren ◽  
Andrew Smith ◽  
Iain R. Spears ◽  
Matthew Weston

2016 ◽  
Vol 15 (2) ◽  
pp. 64-77 ◽  
Author(s):  
D. L. Carey ◽  
K. Ong ◽  
M. E. Morris ◽  
J. Crow ◽  
K. M. Crossley

Abstract The ability of machine learning techniques to predict athlete ratings of perceived exertion (RPE) was investigated in professional Australian football players. RPE is commonly used to quantifying internal training loads and manage injury risk in team sports. Data from global positioning systems, heart-rate monitors, accelerometers and wellness questionnaires were recorded for each training session (n=3398) from 45 professional Australian football players across a full season. A variety of modelling approaches were considered to investigate the ability of objective data to predict RPE. Models were compared using nested cross validation and root mean square error (RMSE) on RPE predictions. A random forest model using player normalised running and heart rate variables provided the most accurate predictions (RMSE ± SD = 0.96 ± 0.08 au). A simplification of the model using only total distance, distance covered at speeds between 18-24 km·h−1, and the product of total distance and mean speed provided similarly accurate predictions (RMSE ± SD = 1.09 ± 0.05 au), suggesting that running distances and speeds are the strongest predictors of RPE in Australian football players. The ability of non-linear machine learning models to accurately predict athlete RPE has applications in live player monitoring and training load planning.


2016 ◽  
Vol 11 (7) ◽  
pp. 947-952 ◽  
Author(s):  
Robin T. Thorpe ◽  
Anthony J. Strudwick ◽  
Martin Buchheit ◽  
Greg Atkinson ◽  
Barry Drust ◽  
...  

Purpose:To quantify the mean daily changes in training and match load and any parallel changes in indicators of morningmeasured fatigue across in-season training weeks in elite soccer players.Methods:After each training session and match (TL), session ratings of perceived exertion (s-RPE) were recorded to calculate overall session load (RPE-TL) in 29 English Premier League players from the same team. Morning ratings of fatigue, sleep quality, and delayed-onset muscle soreness (DOMS), as well as submaximal exercise heart rate (HRex), postexercise heart-rate recovery (HRR%), and heart-rate variability (HRV) were recorded before match day and 1, 2, and 4 d postmatch. Data were collected for a median duration of 3 wk (range 1–13) and reduced to a typical weekly cycle including no midweek match and a weekend match day. Data were analyzed using withinsubject linear mixed models.Results:RPE-TL was approximately 600 arbitrary units (AU) (95% confidence interval 546–644) higher on match day than following day (P < .001). RPE-TL progressively decreased by »60 AU per day over the 3 days before a match (P < .05). Morning-measured fatigue, sleep quality, and DOMS tracked the changes in RPE-TL, being 35–40% worse on postmatch day vs prematch day (P < .001). Perceived fatigue, sleep quality, and DOMS improved by 17–26% from postmatch day to 3 d postmatch, with further smaller (7%–14%) improvements occurring between 4 d postmatch and prematch day (P < .01). There were no substantial or statistically significant changes in HRex, HRR%, or HRV over the weekly cycle (P > .05).Conclusions:Morning-measured ratings of fatigue, sleep quality, and DOMS are clearly more sensitive than HR-derived indices to the daily fluctuations in session load experienced by elite soccer players in a standard in-season week.


1999 ◽  
Vol 2 (1) ◽  
pp. 17-26
Author(s):  
Leon Straker ◽  
Carol Cain

A comparison between semi-squat and squat techniques was made for floor to knuckle height lifting using maximum acceptable weight (MAW), ratings of perceived exertion (RPE) and heart rate. Semi-squat lifting resulted in greater MAW with lower RPE and lower heart rate compared to squat lifting. Discomfort was most commonly reported in knees/quadriceps with squat lifting. Twelve of the 13 subjects preferred the semi-squat technique. The results provide evidence that the semi-squat technique may have benefits over the squat technique for lifting a medium sized box from floor to knuckle height.


2002 ◽  
Vol 139 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. K. SHINDE ◽  
RAGHAVENDRA BHATTA ◽  
S. K. SANKHYAN ◽  
D. L. VERMA

A study of the physiological responses and energy expenditure of goats was carried out from June 1999 to May 2000 by conducting two experiments: one on bucks maintained on stall feeding in autumn 1999 (Expt 1) followed by year-round grazing on native ranges over three seasons: monsoon, winter and summer (Expt 2). Physiological responses and energy expenditure (EE) measurements of housed and grazing goats were recorded at 06.00 h and 14.00 h for 5 consecutive days in each season. Goats were fixed with a face mask and meteorological balloon for collection of expired air and measurement of EE. Respiration rate (RR) at 06.00 h was similar in all seasons (14 respiration/min) except in the monsoon, where a significantly (P<0.05) higher value (26 respiration/min) was recorded. At 14.00 h, RR was higher in monsoon and summer (81 and 91 respiration/min) than in winter (52 respiration/min). Irrespective of the season, heart rate (HR) was higher at 14.00 h (86 beat/min) than at 06.00 h (64 beat/min). The rise of rectal temperature (RT) from morning (06.00 h) to peak daily temperature (14.00 h) was 0.9 °C in housed goats in autumn and 1.0, 2.1 and 2.0 °C in grazing goats during monsoon, winter and summer, respectively. The mean value was 1.7 °C. Skin temperature (ST) was lowest in winter (30.1 °C) and highest at 14.00 h in summer (40.3 °C). Energy expenditure of goats at 06.00 h was 32.7 W in winter and significantly (P<0.05) increased to 52.0 W in summer and 107.8 W in monsoon. At 14.00 h, EE was 140.2 W in winter and increased to 389.0 W and 391.3 W respectively in monsoon and summer. It is concluded that monsoon and summer are both stressful seasons in semi-arid regions. Animals should be protected from direct solar radiation during the hottest hours of the day to ameliorate the effect of heat stress.


2009 ◽  
Vol 23 (4) ◽  
pp. 1292-1299 ◽  
Author(s):  
Michelle Mielke ◽  
Terry J Housh ◽  
C Russell Hendrix ◽  
Clayton L Camic ◽  
Jorge M Zuniga ◽  
...  

Author(s):  
Alexandru Nicolae Ungureanu ◽  
Corrado Lupo ◽  
Gennaro Boccia ◽  
Paolo Riccardo Brustio

Purpose: The primary aim of this study was to evaluate whether the internal (session rating of perceived exertion [sRPE] and Edwards heart-rate-based method) and external training load (jumps) affect the presession well-being perception on the day after (ie, +22 h), according to age and tactical position, in elite (ie, Serie A2) female volleyball training. Methods: Ten female elite volleyball players (age = 23 [4] y, height = 1.82 [0.04] m, body mass = 73.2 [4.9] kg) had their heart rate monitored during 13 team (115 individual) training sessions (duration: 101 [8] min). Mixed-effect models were applied to evaluate whether sRPE, Edwards method, and jumps were correlated (P ≤ .05) to Hooper index factors (ie, perceived sleep quality/disorders, stress level, fatigue, and delayed-onset muscle soreness) in relation to age and tactical position (ie, hitters, central blockers, opposites, and setters). Results: The results showed a direct relationship between sRPE (P < .001) and presession well-being perception 22 hours apart, whereas the relationship was the inverse for Edwards method internal training load. Age, as well as the performed jumps, did not affect the well-being perception of the day after. Finally, central blockers experienced a higher delayed-onset muscle soreness than hitters (P = .003). Conclusions: Findings indicated that female volleyball players’ internal training load influences the pretraining well-being status on the day after (+ 22 h). Therefore, coaches can benefit from this information to accurately implement periodization in a short-term perspective and to properly adopt recovery strategies in relation to the players’ well-being status.


2005 ◽  
Vol 100 (2) ◽  
pp. 357-361 ◽  
Author(s):  
Meir Magal ◽  
Robert F. Zoeller

Ratings of perceived exertion (RPE) are used for exercise programming of cardiac rehabilitation patients, whenever it is difficult to use heart rate to set intensity due to medication or other factors. This investigation examined the physiological responses to two stepping exercise modes (upright and recumbent) at the same RPE. Analysis indicated significant physiological differences between the modes of exercise which may be mediated by postural differences. Specifically, the physiological responses to the recumbent exercise, but not the upright exercise, had the expected relationship with RPE, with recumbent stepping requiring less physiological effort than the upright stepping at the same RPE. As such, we cannot recommend with confidence that the prescription for upright exercise be made based on data from recumbent exercise or vice-versa.


Sign in / Sign up

Export Citation Format

Share Document