Effectiveness of Water Immersion on Postmatch Recovery in Elite Professional Footballers

2013 ◽  
Vol 8 (3) ◽  
pp. 243-253 ◽  
Author(s):  
George P. Elias ◽  
Victoria L. Wyckelsma ◽  
Matthew C. Varley ◽  
Michael J. McKenna ◽  
Robert J. Aughey

Purpose:The efficacy of a single exposure to 14 min of contrast water therapy (CWT) or cold-water immersion (COLD) on recovery postmatch in elite professional footballers was investigated.Method:Twenty-four elite footballers participated in a match followed by 1 of 3 recovery interventions. Recovery was monitored for 48 h postmatch. Repeat-sprint ability (6 × 20-m), static and countermovement jump performance, perceived soreness, and fatigue were measured prematch and immediately, 24 h, and 48 h after the match. Soreness and fatigue were also measured 1 h postmatch. Postmatch, players were randomly assigned to complete passive recovery (PAS; n = 8), COLD (n = 8), or CWT (n = 8).Results:Immediately postmatch, all groups exhibited similar psychometric and performance decrements, which persisted for 48 h only in the PAS group. Repeatsprinting performance remained slower at 24 and 48 h for PAS (3.9% and 2.0%) and CWT (1.6% and 0.9%) but was restored by COLD (0.2% and 0.0%). Soreness after 48 h was most effectively attenuated by COLD (ES 0.59 ± 0.10) but remained elevated for CWT (ES 2.39 ± 0.29) and PAS (ES 4.01 ± 0.97). Similarly, COLD more successfully reduced fatigue after 48 h (ES 1.02 ± 0.72) than did CWT (ES 1.22 ± 0.38) and PAS (ES 1.91 ± 0.67). Declines in static and countermovement jump were ameliorated best by COLD.Conclusions:An elite professional football match results in prolonged physical and psychometric deficits for 48 h. COLD was more successful at restoring physical performance and psychometric measures than CWT, with PAS being the poorest.

2012 ◽  
Vol 7 (4) ◽  
pp. 357-366 ◽  
Author(s):  
George P. Elias ◽  
Matthew C. Varley ◽  
Victoria L. Wyckelsma ◽  
Michael J. McKenna ◽  
Clare L. Minahan ◽  
...  

Purpose:The authors investigated the efficacy of a single exposure to 14 min of cold-water immersion (COLD) and contrast water therapy (CWT) on posttraining recovery in Australian football (AF).Method:Fourteen AF players participated in 3 wk of standardized training. After week 1 training, all players completed a passive recovery (PAS). During week 2, COLD or CWT was randomly assigned. Players undertook the opposing intervention in week 3. Repeat-sprint ability (6 × 20 m), countermovement and squat jumps, perceived muscle soreness, and fatigue were measured pretraining and over 48 h posttraining.Results:Immediately posttraining, groups exhibited similar performance and psychometric declines. At 24 h, repeat-sprint time had deteriorated by 4.1% for PAS and 1.0% for CWT but was fully restored by COLD (0.0%). At 24 and 48 h, both COLD and CWT attenuated changes in mean muscle soreness, with COLD (0.6 ± 0.6 and 0.0 ± 0.4) more effective than CWT (1.9 ± 0.7 and 1.0 ± 0.7) and PAS having minimal effect (5.5 ± 0.6 and 4.0 ± 0.5). Similarly, after 24 and 48 h, COLD and CWT both effectively reduced changes in perceived fatigue, with COLD (0.6 ± 0.6 and 0.0 ± 0.6) being more successful than CWT (0.8 ± 0.6 and 0.7 ± 0.6) and PAS having the smallest effect (2.2 ± 0.8 and 2.4 ± 0.6).Conclusions:AF training can result in prolonged physical and psychometric deficits persisting for up to 48 h. For restoring physical-performance and psychometric measures, COLD was more effective than CWT, with PAS being the least effective. Based on these results the authors recommend that 14 min of COLD be used after AF training.


2017 ◽  
Vol 12 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christos K. Argus ◽  
James R. Broatch ◽  
Aaron C. Petersen ◽  
Remco Polman ◽  
David J. Bishop ◽  
...  

Context:An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.Purpose:To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.Methods:Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.Results:Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.Conclusions:CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.


Author(s):  
Wigand Poppendieck ◽  
Melissa Wegmann ◽  
Anne Hecksteden ◽  
Alexander Darup ◽  
Jan Schimpchen ◽  
...  

Purpose: Cold-water immersion is increasingly used by athletes to support performance recovery. Recently, however, indications have emerged suggesting that the regular use of cold-water immersion might be detrimental to strength training adaptation. Methods: In a randomized crossover design, 11 participants performed two 8-week training periods including 3 leg training sessions per week, separated by an 8-week “wash out” period. After each session, participants performed 10 minutes of either whole-body cold-water immersion (cooling) or passive sitting (control). Leg press 1-repetition maximum and countermovement jump performance were determined before (pre), after (post) and 3 weeks after (follow-up) both training periods. Before and after training periods, leg circumference and muscle thickness (vastus medialis) were measured. Results: No significant effects were found for strength or jump performance. Comparing training adaptations (pre vs post), small and negligible negative effects of cooling were found for 1-repetition maximum (g = 0.42; 95% confidence interval [CI], −0.42 to 1.26) and countermovement jump (g = 0.02; 95% CI, −0.82 to 0.86). Comparing pre versus follow-up, moderate negative effects of cooling were found for 1-repetition maximum (g = 0.71; 95% CI, −0.30 to 1.72) and countermovement jump (g = 0.64; 95% CI, −0.36 to 1.64). A significant condition × time effect (P = .01, F = 10.00) and a large negative effect of cooling (g = 1.20; 95% CI, −0.65 to 1.20) were observed for muscle thickness. Conclusions: The present investigation suggests small negative effects of regular cooling on strength training adaptations.


2017 ◽  
Vol 12 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Abd-Elbasset Abaïdia ◽  
Julien Lamblin ◽  
Barthélémy Delecroix ◽  
Cédric Leduc ◽  
Alan McCall ◽  
...  

Purpose:To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.Methods:Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.Results:Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.Conclusions:CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.


2013 ◽  
Vol 8 (3) ◽  
pp. 227-242 ◽  
Author(s):  
Wigand Poppendieck ◽  
Oliver Faude ◽  
Melissa Wegmann ◽  
Tim Meyer

Purpose:Cooling after exercise has been investigated as a method to improve recovery during intensive training or competition periods. As many studies have included untrained subjects, the transfer of those results to trained athletes is questionable.Methods:Therefore, the authors conducted a literature search and located 21 peer-reviewed randomized controlled trials addressing the effects of cooling on performance recovery in trained athletes.Results:For all studies, the effect of cooling on performance was determined and effect sizes (Hedges’ g) were calculated. Regarding performance measurement, the largest average effect size was found for sprint performance (2.6%, g = 0.69), while for endurance parameters (2.6%, g = 0.19), jump (3.0%, g = 0.15), and strength (1.8%, g = 0.10), effect sizes were smaller. The effects were most pronounced when performance was evaluated 96 h after exercise (4.3%, g = 1.03). Regarding the exercise used to induce fatigue, effects after endurance training (2.4%, g = 0.35) were larger than after strength-based exercise (2.4%, g = 0.11). Cold-water immersion (2.9%, g = 0.34) and cryogenic chambers (3.8%, g = 0.25) seem to be more beneficial with respect to performance than cooling packs (−1.4%, g= −0.07). For cold-water application, whole-body immersion (5.1%, g = 0.62) was significantly more effective than immersing only the legs or arms (1.1%, g = 0.10).Conclusions:In summary, the average effects of cooling on recovery of trained athletes were rather small (2.4%, g = 0.28). However, under appropriate conditions (whole-body cooling, recovery from sprint exercise), postexercise cooling seems to have positive effects that are large enough to be relevant for competitive athletes.


Author(s):  
M. Mokhtar ◽  
B. Adel ◽  
B. Wahib ◽  
A. Hocine ◽  
B. Othman ◽  
...  

Purpose: The purpose of this study is to compare two cold water immersion (CWI) protocols, continuous and fractionated, to optimize the recovery of Handball players after on recovery from exercise resulting in exercise-induced muscle damage. Material: Ten male Handball players (age: 15 ± 1.4 years, mass index: 67.2 ± 5.1 kg, height: 176.6 ± 7.30) voluntarily participated in the study. After three 90-minute training sessions (average heart rate 160 ± 15.81, 156 ± 5.53 and 156 ± 12.24 bpm) per week, participants were divided into 03 groups. The first experimental group (GE1) in continuous immersion (CWIC) of (12 minutes, 12± 0.4° C), a second experimental group (GE2) in fractional immersion (CWIF) of (4 x 2 min at 12 ± 0.4° C + 1 min out of water) and a control group (GC) in passive recovery. Body mass indices (BMI), countermovement (Countermovement jump) and muscle pain (Intensity of pain in the thighs) were measured. Results : The results concerning the percentage differences in the variation of the CMJ occurred respectively at 24h (Z = 12.62, p = 0.004) and 48h (Z = 16.22, p <0.001) compared to the control group. In addition, the results for muscle volume did not report any significant interaction (F (5.64) = 3.42, p = 0.078). The results of both protocols showed their effectiveness in reducing pain intensity by 24 and 48 hours after intense training (F (3.54) = 2.91, p = 0.016, p2 = 0.24). Conclusion: In conclusion, continuous and fractionated cold water immersion is beneficial for neuromuscular recovery 24 hours after intense exercise. The results also demonstrate a rapid recovery of handball players from their physical potential required in high level competitions.


Sign in / Sign up

Export Citation Format

Share Document