Cold water immersion is most effective for recovery of repeat sprint ability and reducing fatigue post an Australian football game

2010 ◽  
Vol 13 ◽  
pp. e16
Author(s):  
G. Elias ◽  
M. Varley ◽  
V. Wyckelsma ◽  
C. Minahan ◽  
M. McKenna ◽  
...  
2012 ◽  
Vol 7 (4) ◽  
pp. 357-366 ◽  
Author(s):  
George P. Elias ◽  
Matthew C. Varley ◽  
Victoria L. Wyckelsma ◽  
Michael J. McKenna ◽  
Clare L. Minahan ◽  
...  

Purpose:The authors investigated the efficacy of a single exposure to 14 min of cold-water immersion (COLD) and contrast water therapy (CWT) on posttraining recovery in Australian football (AF).Method:Fourteen AF players participated in 3 wk of standardized training. After week 1 training, all players completed a passive recovery (PAS). During week 2, COLD or CWT was randomly assigned. Players undertook the opposing intervention in week 3. Repeat-sprint ability (6 × 20 m), countermovement and squat jumps, perceived muscle soreness, and fatigue were measured pretraining and over 48 h posttraining.Results:Immediately posttraining, groups exhibited similar performance and psychometric declines. At 24 h, repeat-sprint time had deteriorated by 4.1% for PAS and 1.0% for CWT but was fully restored by COLD (0.0%). At 24 and 48 h, both COLD and CWT attenuated changes in mean muscle soreness, with COLD (0.6 ± 0.6 and 0.0 ± 0.4) more effective than CWT (1.9 ± 0.7 and 1.0 ± 0.7) and PAS having minimal effect (5.5 ± 0.6 and 4.0 ± 0.5). Similarly, after 24 and 48 h, COLD and CWT both effectively reduced changes in perceived fatigue, with COLD (0.6 ± 0.6 and 0.0 ± 0.6) being more successful than CWT (0.8 ± 0.6 and 0.7 ± 0.6) and PAS having the smallest effect (2.2 ± 0.8 and 2.4 ± 0.6).Conclusions:AF training can result in prolonged physical and psychometric deficits persisting for up to 48 h. For restoring physical-performance and psychometric measures, COLD was more effective than CWT, with PAS being the least effective. Based on these results the authors recommend that 14 min of COLD be used after AF training.


2013 ◽  
Vol 8 (3) ◽  
pp. 243-253 ◽  
Author(s):  
George P. Elias ◽  
Victoria L. Wyckelsma ◽  
Matthew C. Varley ◽  
Michael J. McKenna ◽  
Robert J. Aughey

Purpose:The efficacy of a single exposure to 14 min of contrast water therapy (CWT) or cold-water immersion (COLD) on recovery postmatch in elite professional footballers was investigated.Method:Twenty-four elite footballers participated in a match followed by 1 of 3 recovery interventions. Recovery was monitored for 48 h postmatch. Repeat-sprint ability (6 × 20-m), static and countermovement jump performance, perceived soreness, and fatigue were measured prematch and immediately, 24 h, and 48 h after the match. Soreness and fatigue were also measured 1 h postmatch. Postmatch, players were randomly assigned to complete passive recovery (PAS; n = 8), COLD (n = 8), or CWT (n = 8).Results:Immediately postmatch, all groups exhibited similar psychometric and performance decrements, which persisted for 48 h only in the PAS group. Repeatsprinting performance remained slower at 24 and 48 h for PAS (3.9% and 2.0%) and CWT (1.6% and 0.9%) but was restored by COLD (0.2% and 0.0%). Soreness after 48 h was most effectively attenuated by COLD (ES 0.59 ± 0.10) but remained elevated for CWT (ES 2.39 ± 0.29) and PAS (ES 4.01 ± 0.97). Similarly, COLD more successfully reduced fatigue after 48 h (ES 1.02 ± 0.72) than did CWT (ES 1.22 ± 0.38) and PAS (ES 1.91 ± 0.67). Declines in static and countermovement jump were ameliorated best by COLD.Conclusions:An elite professional football match results in prolonged physical and psychometric deficits for 48 h. COLD was more successful at restoring physical performance and psychometric measures than CWT, with PAS being the poorest.


2014 ◽  
Vol 222 (3) ◽  
pp. 165-170 ◽  
Author(s):  
Andrew L. Geers ◽  
Jason P. Rose ◽  
Stephanie L. Fowler ◽  
Jill A. Brown

Experiments have found that choosing between placebo analgesics can reduce pain more than being assigned a placebo analgesic. Because earlier research has shown prior experience moderates choice effects in other contexts, we tested whether prior experience with a pain stimulus moderates this placebo-choice association. Before a cold water pain task, participants were either told that an inert cream would reduce their pain or they were not told this information. Additionally, participants chose between one of two inert creams for the task or they were not given choice. Importantly, we also measured prior experience with cold water immersion. Individuals with prior cold water immersion experience tended to display greater placebo analgesia when given choice, whereas participants without this experience tended to display greater placebo analgesia without choice. Prior stimulus experience appears to moderate the effect of choice on placebo analgesia.


1999 ◽  
Vol 87 (1) ◽  
pp. 243-246 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
James E. Kain ◽  
Michael N. Sawka

This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.


2009 ◽  
Vol 65 (1) ◽  
Author(s):  
D.V. Van Wyk ◽  
M.I. Lambert

Objective: The main aim of this study was to determine strategies used toaccelerate recovery of elite rugby players after training and matches, asused by medical support staff of rugby teams in South A frica. A  secondaryaim was to focus on specifics of implementing ice/cold water immersion asrecovery strategy. Design: A  Questionnaire-based cross sectional descriptive survey was used.Setting and Participants: Most (n=58) of the medical support staff ofrugby teams (doctors, physiotherapists, biokineticists and fitness trainers)who attended the inaugural Rugby Medical A ssociation conference linked to the South A frican Sports MedicineA ssociation Conference in Pretoria (14-16th November, 2007) participated in the study. Results: Recovery strategies were utilized mostly after matches. Stretching and ice/cold water immersion were utilized the most (83%). More biokineticists and fitness trainers advocated the usage of stretching than their counter-parts (medical doctors and physiotherapists). Ice/Cold water immersion and A ctive Recovery were the top two ratedstrategies. A  summary of the details around implementation of ice/cold water therapy is shown (mean) as utilized bythe subjects: (i) The time to immersion after matches was 12±9 min; (ii) The total duration of one immersion sessionwas 6±6 min; (iii) 3 immersion sessions per average training week was utilized by subjects; (iv) The average water temperature was 10±3 ºC.; (v) Ice cubes were used most frequently to cool water for immersion sessions, and(vi) plastic drums were mostly used as the container for water. Conclusion: In this survey the representative group of support staff provided insight to which strategies are utilizedin South A frican elite rugby teams to accelerate recovery of players after training and/or matches.


2017 ◽  
Vol 313 (4) ◽  
pp. R372-R384 ◽  
Author(s):  
James R. Broatch ◽  
Aaron Petersen ◽  
David J. Bishop

We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) mRNA were all increased ( P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance ( P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chikao Ito ◽  
Isao Takahashi ◽  
Miyuki Kasuya ◽  
Kyoji Oe ◽  
Masahito Uchino ◽  
...  

Medicine ◽  
2016 ◽  
Vol 95 (1) ◽  
pp. e2455 ◽  
Author(s):  
Simon S. Yeung ◽  
Kin Hung Ting ◽  
Maurice Hon ◽  
Natalie Y. Fung ◽  
Manfi M. Choi ◽  
...  

2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


Sign in / Sign up

Export Citation Format

Share Document