Breaking Away: Effects of Nonuniform Pacing on Power Output and Growth of Rating of Perceived Exertion

2013 ◽  
Vol 8 (4) ◽  
pp. 352-357 ◽  
Author(s):  
Jacob Cohen ◽  
Bridgette Reiner ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Glenn Wright ◽  
...  

The rating of perceived exertion (RPE) normally grows as a scalar function of relative competitive distance, suggesting that it may translate between the brain and body relative to managing fatigue during time-trial exercise. In nonstandard pacing situations, a reciprocal relationship between RPE and power output (PO) would be predicted.Purpose:To determine whether PO would decrease when RPE was forced above the normal growth curve during a cycle time trial.Methods:Well-trained cyclists performed randomly ordered 10-km cycle time trials. In CONTROL they rode at their own best pace throughout. In BURST, they made a 1-km “burst” at the 4-km mark and then finished as rapidly as possible.Results:CONTROL was significantly (P < .05) faster than BURST (16:36 vs 17:00 min). During CONTROL, responses between 4 and 5 km were PO, 240 W; RPE, 5–6; and blood lactate [HLa], 8–9 mmol/L. During BURST PO increased to 282 W, then fell to 220 W after the burst and remained below CONTROL until the end spurt (9 km). RPE increased to 9 during the burst but returned to the normal RPE growth pattern by 6 km; [HLa] increased to ~13 mmol/L after the burst and remained elevated throughout the remainder of the trial.Conclusions:The reciprocal behavior of RPE and PO after BURST supports the hypothesis that RPE translates between the brain and the body during heavy exercise. However, the continuing reduction of PO after the burst, even after RPE returned to its normal growth pattern, suggests that PO is regulated in a more complex manner than reflected solely by RPE.

2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


2016 ◽  
Vol 11 (8) ◽  
pp. 1024-1028 ◽  
Author(s):  
Sam S.X. Wu ◽  
Jeremiah J. Peiffer ◽  
Peter Peeling ◽  
Jeanick Brisswalter ◽  
Wing Y. Lau ◽  
...  

Purpose:To investigate the effect of 3 swim-pacing profiles on subsequent performance during a sprint-distance triathlon (SDT). Methods:Nine competitive/trained male triathletes completed 5 experimental sessions including a graded running exhaustion test, a 750-m swim time trial (STT), and 3 SDTs. The swim times of the 3 SDTs were matched, but pacing was manipulated to induce positive (ie, speed gradually decreasing from 92% to 73% STT), negative (ie, speed gradually increasing from 73% to 92% STT), or even pacing (constant 82.5% STT). The remaining disciplines were completed at a self-selected maximal pace. Speed over the entire triathlon, power output during the cycle discipline, rating of perceived exertion (RPE) for each discipline, and heart rate during the cycle and run were determined. Results:Faster cycle and overall triathlon times were achieved with positive swim pacing (30.5 ± 1.8 and 65.9 ± 4.0 min, respectively), as compared with the even (31.4 ± 1.0 min, P = .018 and 67.7 ± 3.9 min, P = .034, effect size [ES] = 0.46, respectively) and negative (31.8 ± 1.6 min, P = .011 and 67.3 ± 3.7 min, P = .041, ES = 0.36, respectively) pacing. Positive swim pacing elicited a lower RPE (9 ± 2) than negative swim pacing (11 ± 2, P = .014). No differences were observed in the other measured variables. Conclusions:A positive swim pacing may improve overall SDT performance and should be considered by both elite and age-group athletes during racing.


2011 ◽  
Vol 36 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Timothy David Noakes

In 1923, Nobel Laureate A.V. Hill proposed that maximal exercise performance is limited by the development of anaerobiosis in the exercising skeletal muscles. Variants of this theory have dominated teaching in the exercise sciences ever since, but 90 years later there is little biological evidence to support Hill’s belief, and much that disproves it. The cardinal weakness of the Hill model is that it allows no role for the brain in the regulation of exercise performance. As a result, it is unable to explain at least 6 common phenomena, including (i) differential pacing strategies for different exercise durations; (ii) the end spurt; (iii) the presence of fatigue even though homeostasis is maintained; (iv) fewer than 100% of the muscle fibers have been recruited in the exercising limbs; (v) the evidence that a range of interventions that act exclusively on the brain can modify exercise performance; and (vi) the finding that the rating of perceived exertion is a function of the relative exercise duration rather than the exercise intensity. Here I argue that the central governor model (CGM) is better able to explain these phenomena. In the CGM, exercise is seen as a behaviour that is regulated by complex systems in the central nervous system specifically to ensure that exercise terminates before there is a catastrophic biological failure. The complexity of this regulation cannot be appreciated if the body is studied as a collection of disconnected components, as is the usual approach in the modern exercise sciences.


2013 ◽  
Vol 8 (1) ◽  
pp. 104-106 ◽  
Author(s):  
Jana Hagen ◽  
Carl Foster ◽  
Jose Rodríguez-Marroyo ◽  
Jos J. de Koning ◽  
Richard P. Mikat ◽  
...  

Music is widely used as an ergogenic aid in sport, but there is little evidence of its effectiveness during closedloop athletic events. In order to determine the effectiveness of music as an ergogenic aid, well-trained and task-habituated cyclists performed 10-km cycle time trials either while listening to self-selected motivational music or with auditory input blocked. There were no statistically significant differences in performance time or physiological or psychological markers related to music (time-trial duration 17.75 ± 2.10 vs 17.81 ± 2.06 min, mean power output 222 ± 66 vs 220 ± 65 W, peak heart rate 184 ± 9 vs 183 ± 8 beats/min, peak blood lactate 12.1 ± 2.6 vs 11.9 ± 2.1 mmol/L, and final rating of perceived exertion 8.4 ± 1.5 vs 8.5 ± 1.6). It is concluded that during exercise at competitive intensity, there is no meaningful effect of music on either performance or physiology.


2015 ◽  
Vol 10 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Martin J. Barwood ◽  
Jo Corbett ◽  
Christopher R.D. Wagstaff ◽  
Dan McVeigh ◽  
Richard C. Thelwell

Purpose:Unpleasant physical sensations during maximal exercise may manifest themselves as negative cognitions that impair performance, alter pacing, and are linked to increased rating of perceived exertion (RPE). This study examined whether motivational self-talk (M-ST) could reduce RPE and change pacing strategy, thereby enhancing 10-km time-trial (TT) cycling performance in contrast to neutral self-talk (N-ST).Methods:Fourteen men undertook 4 TTs, TT1–TT4. After TT2, participants were matched into groups based on TT2 completion time and underwent M-ST (n = 7) or N-ST (n = 7) after TT3. Performance, power output, RPE, and oxygen uptake (VO2) were compared across 1-km segments using ANOVA. Confidence intervals (95%CI) were calculated for performance data.Results:After TT3 (ie, before intervention), completion times were not different between groups (M-ST, 1120 ± 113 s; N-ST, 1150 ± 110 s). After M-ST, TT4 completion time was faster (1078 ± 96 s); the N-ST remained similar (1165 ± 111 s). The M-ST group achieved this through a higher power output and VO2 in TT4 (6th–10th km). RPE was unchanged. CI data indicated the likely true performance effect lay between 13- and 71-s improvement (TT4 vs TT3).Conclusion:M-ST improved endurance performance and enabled a higher power output, whereas N-ST induced no change. The VO2 response matched the increase in power output, yet RPE was unchanged, thereby inferring a perceptual benefit through M-ST. The valence and content of self-talk are important determinants of the efficacy of this intervention. These findings are primarily discussed in the context of the psychobiological model of pacing.


2018 ◽  
Vol 28 (3) ◽  
pp. 274-278 ◽  
Author(s):  
Terri Graham-Paulson ◽  
Claudio Perret ◽  
Victoria Goosey-Tolfrey

Caffeine’s (CAF) ability to influence upper-body exercise endurance performance may be related to an individual’s training status. This case study therefore aimed to investigate the ergogenic effects of CAF dose on 20-km time trial (TT) performance of an elite male paratriathlete (wheelchair user; age = 46 years, body mass = 76.9 kg, body fat = 25.4%, and handcycling ). The athlete completed four 20-km handcycling TTs on a Cyclus II ergometer under controlled laboratory conditions following the ingestion of 2, 4, and 6 mg/kg CAF or placebo (PLA). Blood lactate concentration, power output, arousal, and ratings of perceived exertion were recorded. Ingestion of 2, 4, and 6 mg/kg CAF resulted in a 2%, 1.5%, and 2.7% faster TT compared with PLA (37:40 min:s). The participant’s blood lactate concentration increased throughout all trials and was greater during CAF compared with PLA. There were no obvious differences in ratings of perceived exertion between trials despite different performance times. Baseline arousal scores differed between PLA and 4 mg/kg CAF (1 = low), and 2 and 6 mg/kg CAF (3 = moderate). Arousal increased at each time point following the ingestion of 4 and 6 mg/kg CAF. The largest CAF dose resulted in a positive pacing strategy, which, when combined with an end spurt, resulted in the fastest TT. CAF improved 20-km TT performance of an elite male paratriathlete, which may be related to greater arousal and an increased power output for a given rating of perceived exertion.


2017 ◽  
Vol 12 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Shane Malone ◽  
Mark Roe ◽  
Dominic A. Doran ◽  
Tim J. Gabbett ◽  
Kieran D. Collins

Purpose:To examine the association between combined session rating of perceived exertion (RPE) workload measures and injury risk in elite Gaelic footballers.Methods:Thirty-seven elite Gaelic footballers (mean ± SD age 24.2 ± 2.9 y) from 1 elite squad were involved in a single-season study. Weekly workload (session RPE multiplied by duration) and all time-loss injuries (including subsequent-wk injuries) were recorded during the period. Rolling weekly sums and wk-to-wk changes in workload were measured, enabling the calculation of the acute:chronic workload ratio by dividing acute workload (ie, 1-weekly workload) by chronic workload (ie, rolling-average 4-weekly workload). Workload measures were then modeled against data for all injuries sustained using a logistic-regression model. Odds ratios (ORs) were reported against a reference group.Results:High 1-weekly workloads (≥2770 arbitrary units [AU], OR = 1.63–6.75) were associated with significantly higher risk of injury than in a low-training-load reference group (<1250 AU). When exposed to spikes in workload (acute:chronic workload ratio >1.5), players with 1 y experience had a higher risk of injury (OR = 2.22) and players with 2–3 (OR = 0.20) and 4–6 y (OR = 0.24) of experience had a lower risk of injury. Players with poorer aerobic fitness (estimated from a 1-km time trial) had a higher injury risk than those with higher aerobic fitness (OR = 1.50–2.50). An acute:chronic workload ratio of (≥2.0) demonstrated the greatest risk of injury.Conclusions:These findings highlight an increased risk of injury for elite Gaelic football players with high (>2.0) acute:chronic workload ratios and high weekly workloads. A high aerobic capacity and playing experience appears to offer injury protection against rapid changes in workload and high acute:chronic workload ratios. Moderate workloads, coupled with moderate to high changes in the acute:chronic workload ratio, appear to be protective for Gaelic football players.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


Sign in / Sign up

Export Citation Format

Share Document