Standing Versus Stepping—Exploring the Relationships Between Postural Steadiness and Dynamic Reactive Balance Control

2018 ◽  
Vol 34 (6) ◽  
pp. 488-495 ◽  
Author(s):  
Michelle R. Tanel ◽  
Tyler B. Weaver ◽  
Andrew C. Laing

While the literature has characterized balance control during quasi-static and/or dynamic tasks, comparatively few studies have examined relationships across paradigms. This study investigated whether quiet-stance postural steadiness metrics were associated with reactive control parameters (during both stepping and restabilization phases) following a lean-and-release perturbation. A total of 40 older adults participated. Postural steadiness (center of the pressure range, root mean square, velocity, and frequency) was evaluated in “feet together” and “tandem stance” positions. During the reactive control trials, the step length, step width, movement time, and reaction time were measured, in addition to the postural steadiness variables measured during the restabilization phase following the stepping response. Out of 64 comparisons, only 10 moderate correlations were observed between postural steadiness and reactive spatio-temporal stepping parameters (P ≤ .05, r = −.312 to −.534). However, postural steadiness metrics were associated with the center of pressure velocity and frequency during the restabilization phase of the reactive control trials (P ≤ .02, r = .383 to .775 for velocity and P ≤ .01, r = .386 to .550 for frequency). Although some elements of quasi-static center of pressure control demonstrated moderate associations with dynamic stepping responses, relationships were stronger for restabilization phase dynamics after foot-contact. Future work should examine the potential association between restabilization phase control and older adult fall-risk.

2012 ◽  
Vol 24 (03) ◽  
pp. 207-216 ◽  
Author(s):  
Yu-Hsiu Chu ◽  
Chih-Hsiu Cheng ◽  
Pei-Fang Tang ◽  
Kwan-Hwa Lin

This study investigated center-of-pressure (COP) characteristics during volitional stepping in forward, backward, and sideways directions, along with the behavioral performance measures and COP measures of volitional stepping in these directions, and the relationships between these two types of measures in healthy older and young adults. Fifteen older and 15 young adults performed rapid stepping in the three directions using each leg. Behavioral performance measures included reaction time (RT), movement time (MT), step length, and step velocity in the MT phase. COP measures included the maximum anteroposterior (COPAP) and mediolateral COP displacement (COPML) in the RT phase. Stepping in each direction demonstrated unique COP characteristics. The older adults presented slower RT, MT, step velocity, and smaller COPAP in all three stepping directions (p < 0.05), as well as smaller COPML in the sideways stepping direction (p < 0.017), compared to the young adults. Step velocity correlated with COPAP and/or COPML in all three stepping directions for both groups (r = 0.42–0.77, p < 0.05), suggesting that stepping performances during the movement execution phase correlated with COP control during the postural preparation phase. Results suggest that stepping training prescribed to older adults to improve their balance control may include multi-directional stepping.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 550
Author(s):  
Roberto Sanchis-Sanchis ◽  
Alberto Encarnación-Martínez ◽  
Jose I. Priego-Quesada ◽  
Inmaculada Aparicio ◽  
Irene Jimenez-Perez ◽  
...  

Amateur runners usually run carrying implements in their hands (keys, a mobile phone, or a bottle of water). However, there is a lack of literature about the effects of different handloads on impact accelerations. Thus, this study aimed to analyse the effects of carrying different objects in the hand on impact accelerations during running. Nineteen male recreational runners (age 24.3 ± 6.8 years, training volume of 25 ± 7.38 km/week) performed twenty minutes of running on a treadmill at 2.78 m/s with four different conditions: no extra weight, with keys, with a mobile phone, and with a bottle of water. Impact acceleration and spatio-temporal parameters were analysed through a wireless triaxial accelerometry system composed of three accelerometers: two placed in each tibia and one placed on the forehead. A higher tibia acceleration rate in the dominant leg was observed when participants ran holding both a mobile phone (p = 0.027; ES = 0.359) and a bottle of water (p = 0.027; ES = 0.359), compared to no extra weight. No changes were observed in peak acceleration, acceleration magnitude, and shock attenuation in any other conditions. Likewise, neither stride frequency nor step length was modified. Our results suggest that recreational runners should not worry about carrying objects in their hands, like a mobile phone or a bottle of water, in short races because their effect seems minimal.


2021 ◽  
Vol 11 (5) ◽  
pp. 2093
Author(s):  
Noé Perrotin ◽  
Nicolas Gardan ◽  
Arnaud Lesprillier ◽  
Clément Le Goff ◽  
Jean-Marc Seigneur ◽  
...  

The recent popularity of trail running and the use of portable sensors capable of measuring many performance results have led to the growth of new fields in sports science experimentation. Trail running is a challenging sport; it usually involves running uphill, which is physically demanding and therefore requires adaptation to the running style. The main objectives of this study were initially to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners or trainers. In the second step, measurements were taken in ecological conditions orderly to expose the runners to a real trail course. Furthermore, to combine the collected data to analyze the most efficient running techniques according to the typology of the terrain were taken, as well on the whole trail circuit of less than 10km. The three sensors used were (i) a Stryd sensor (Stryd Inc. Boulder CO, USA) based on an inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer) fixed on the top of the runner’s shoe, (ii) a Global Positioning System (GPS) watch and (iii) a heart belt. Twenty-eight trail runners (25 men, 3 women: average age 36 ± 8 years; height: 175.4 ± 7.2 cm; weight: 68.7 ± 8.7 kg) of different levels completed in a single race over a 8.5 km course with 490 m of positive elevation gain. This was performed with different types of terrain uphill (UH), downhill (DH), and road sections (R) at their competitive race pace. On these sections of the course, cadence (SF), step length (SL), ground contact time (GCT), flight time (FT), vertical oscillation (VO), leg stiffness (Kleg), and power (P) were measured with the Stryd. Heart rate, speed, ascent, and descent speed were measured by the heart rate belt and the GPS watch. This study showed that on a ≤10 km trail course the criteria for obtaining a better time on the loop, determined in the test, was consistency in the effort. In a high percentage of climbs (>30%), two running techniques stand out: (i) maintaining a high SF and a short SL and (ii) decreasing the SF but increasing the SL. In addition, it has been shown that in steep (>28%) and technical descents, the average SF of the runners was higher. This happened when their SL was shorter in lower steep and technically challenging descents.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Filippo Camerota ◽  
Manuela Galli ◽  
Claudia Celletti ◽  
Sara Vimercati ◽  
Veronica Cimolin ◽  
...  

Objective. To investigate quantitatively and objectively the effects of repeated muscle vibration (rMV) of triceps surae on the gait pattern in a 5-year-old patient with Cerebral Palsy with equinus foot deformity due to calf spasticity.Methods. The patient was assessed before and one month after the rMV treatment using Gait Analysis.Results. rMV had positive effects on the patient's gait pattern, as for spatio-temporal parameters (the stance duration and the step length increased their values after the treatment) and kinematics. The pelvic tilt reduced its anteversion and the hip reduced the high flexion evidenced at baseline; the knee and the ankle gained a more physiological pattern bilaterally. The Gillette Gait Index showed a significant reduction of its value bilaterally, representing a global improvement of the child's gait pattern.Conclusions. The rMV technique seems to be an effective option for the gait pattern improvement in CP, which can be used also in very young patient. Significant improvements were displayed in terms of kinematics at all lower limb joints, not only at the joint directly involved by the treatment (i.e., ankle and knee joints) but also at proximal joints (i.e., pelvis and hip joint).


Robotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 89 ◽  
Author(s):  
Giuseppe Menga ◽  
Marco Ghirardi

The zero moment point ( Z M P ) and the linearized inverted pendulum model linking the Z M P to the center of gravity ( C O G ) have an important role in the control of the postural equilibrium (balance) of biped robots and lower-limb exoskeletons. A solution for balance real time control, closing the loop from the joint actual values of the C O G and Z M P , has been proposed by Choi. However, this approach cannot be practically implemented: While the Z M P actual value is available from the center of pressure ( C o P ) measured under the feet soles, the C O G is not measurable, but it can only be indirectly assessed from the joint-angle measures, the knowledge of the kinematics, and the usually poorly known weight distribution of the links of the chain. Finally, the possible presence of unknown external disturbance forces and the nonlinear, complex nature of the kinematics perturb the simple relationship between the Z M P and C O G in the linearized model. The aim of this paper is to offer, starting from Choi’s model, a practical implementation of closed-loop balance control fusing C o P and joint-angle measures, eliminating possible inconsistencies. In order to achieve this result, we introduce a model of the linearized inverted pendulum for an extended estimation, not only of C O G and Z M P , but also of external disturbances. This model is then used, instead of Choi’s equations, for estimation and balance control, using H ∞ theory. As the C O G information is recovered from the joint-angle measures, the identification of a statistically equivalent serial chain ( S E S C ) linking the C O G to the joint angles is also discussed.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 402 ◽  
Author(s):  
Juan De la Torre ◽  
Javier Marin ◽  
Marco Polo ◽  
José J. Marín

Balance disorders have a high prevalence among elderly people in developed countries, and falls resulting from balance disorders involve high healthcare costs. Therefore, tools and indicators are necessary to assess the response to treatments. Therefore, the aim of this study is to detect relevant changes through minimal detectable change (MDC) values in patients with balance disorders, specifically with vertigo. A test-retest of a static and dynamic balance test was conducted on 34 healthy young volunteer subjects using a portable stabilometric platform. Afterwards, in order to show the MDC applicability, eight patients diagnosed with balance disorders characterized by vertigo of vestibular origin performed the balance test before and after a treatment, contrasting the results with the assessment by a specialist physician. The balance test consisted of four tasks from the Romberg test for static balance control, assessing dynamic postural balance through the limits of stability (LOS). The results obtained in the test-retest show the reproducibility of the system as being similar to or better than those found in the literature. Regarding the static balance variables with the lowest MDC value, we highlight the average velocity of the center of pressure (COP) in all tasks and the root mean square (RMS), the area, and the mediolateral displacement in soft surface, with eyes closed. In LOS, all COP limits and the average speed of the COP and RMS were highlighted. Of the eight patients assessed, an agreement between the specialist physician and the balance test results exists in six of them, and for two of the patients, the specialist physician reported no progression, whereas the balance test showed worsening. Patients showed changes that exceeded the MDC values, and these changes were correlated with the results reported by the specialist physician. We conclude that (at least for these eight patients) certain variables were sufficiently sensitive to detect changes linked to balance progression. This is intended to improve decision making and individualized patient monitoring.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7216
Author(s):  
Wei Yang ◽  
Jiyu Zhang ◽  
Sheng Zhang ◽  
Canjun Yang

With the help of wearable robotics, the lower limb exoskeleton becomes a promising solution for spinal cord injury (SCI) patients to recover lower body locomotion ability. However, fewer exoskeleton gait planning methods can meet the needs of patient in real time, e.g., stride length or step width, etc., which may lead to human-machine incoordination, limit comfort, and increase the risk of falling. This work presents a human-exoskeleton-crutch system with the center of pressure (CoP)-based gait planning method to enable the balance control during the exoskeleton-assisted walking with crutches. The CoP generated by crutches and human-machine feet makes it possible to obtain the overall stability conditions of the system in the process of exoskeleton-assisted quasi-static walking, and therefore, to determine the next stride length and ensure the balance of the next step. Thus, the exoskeleton gait is planned with the guidance of stride length. It is worth emphasizing that the nominal reference gait is adopted as a reference to ensure that the trajectory of the swing ankle mimics the reference one well. This gait planning method enables the patient to adaptively interact with the exoskeleton gait. The online gait planning walking tests with five healthy volunteers proved the method’s feasibility. Experimental results indicate that the algorithm can deal with the sensed signals and plan the landing point of the swing leg to ensure balanced and smooth walking. The results suggest that the method is an effective means to improve human–machine interaction. Additionally, it is meaningful for the further training of independent walking stability control in exoskeletons for SCI patients with less assistance of crutches.


2013 ◽  
Vol 110 (11) ◽  
pp. 2557-2562 ◽  
Author(s):  
Jarmo M. Piirainen ◽  
Vesa Linnamo ◽  
Neil J. Cronin ◽  
Janne Avela

This study investigated age-related differences in dynamic balance control and its connection to reflexes and explosive isometric plantar flexor torque in 19 males (9 Young aged 20–33 yr, 10 Elderly aged 61–72 yr). Dynamic balance was measured during Slow (15 cm/s) and Fast (25 cm/s) anterior and posterior perturbations. H/M-ratio was measured at 20% of maximal M-wave (H/M20%) 10, 30, and 90 ms after perturbations. Stretch reflexes were measured from tibialis anterior and soleus during anterior and posterior perturbations, respectively. In Slow, Elderly exhibited larger peak center-of-pressure (COP) displacement (15%; P < 0.05) during anterior perturbations. In Fast, Young showed a trend for faster recovery (37%; P = 0.086) after anterior perturbations. M-wave latency was similar between groups (6.2 ± 0.7 vs. 6.9 ± 1.2 ms), whereas Elderly showed a longer H-reflex latency (33.7 ± 2.3 vs. 36.4 ± 1.7 ms; P < 0.01). H/M20% was higher in Young 30 ms after Fast anterior (50%; P < 0.05) and posterior (51%; P < 0.05) perturbations. Plantar flexor rapid torque was also higher in Young (26%; P < 0.05). After combining both groups' data, H/M20% correlated negatively with Slow peak COP displacement ( r = −0.510, P < 0.05) and positively with Fast recovery time ( r = 0.580, P < 0.05) for anterior perturbations. Age-related differences in balance control seem to be more evident in anterior than posterior perturbations, and rapid sensory feedback is generally important for balance perturbation recovery.


2020 ◽  
Vol 36 (4) ◽  
pp. 228-234
Author(s):  
Ziva M. Rosker ◽  
Jernej Rosker ◽  
Nejc Sarabon

Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction–specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial–lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.


Sign in / Sign up

Export Citation Format

Share Document