Nordic Walking Improves Postural Alignment and Leads to a More Normal Gait Pattern Following Weeks of Training: A Pilot Study

2016 ◽  
Vol 24 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Christopher Dalton ◽  
Julie Nantel

The aim of this study was to investigate the impact of an 8-week Nordic walking (NW) intervention on older adult gait patterns and postural alignment. Twelve healthy older adults aged 60–80 years (8 female, 4 male) participated, all performing two 6-min walk tests (one with poles [WP], one without poles [NP]) and six 5-m walk trials (3 WP, 3 NP) at pre- and posttesting. Gait and postural variables were compared between poling conditions (i.e., WP to NP) as well as before and following the intervention. Following training, pole use resulted in various gait changes including: longer stride, faster gait, and increased power generation at the hip (H3) and power absorption at the knee (K1 and K4). We conclude that an initial 8-week training period is necessary for novice NW to perfect technique and to restore gait to a more natural, normal pattern following training.

2018 ◽  
Vol 26 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Lei Zhou ◽  
Marie-Anne Gougeon ◽  
Julie Nantel

We investigated the impact of Nordic walking (NW) on gait patterns in individuals with Parkinson’s disease (PD) following a 6-week NW familiarization. Twelve participants with PD and 12 healthy older adults took part in a gait analysis walking with and without poles (NP). Results showed larger knee power (knee extensor: K2) on the most affected leg in NW compared to NP (P = .01). On the less affected side, larger power absorption (knee extensor: K3) was found during preswing (K3) compared to older adults in both NP and NW (P = 0.01). NW showed longer stride length and single support time (P < .01) compared to NP. Walking with poles improved gait spatial–temporal characteristics and power profiles at the knee joint both on the less and most affected sides in individuals with PD. NW could be beneficial to help regain a more functional gait pattern in PD.


Author(s):  
Massimiliano Pau ◽  
Micaela Porta ◽  
Giuseppina Pilloni ◽  
Federica Corona ◽  
Maria Chiara Fastame ◽  
...  

The use of a mobile phone for texting purposes results in distracted walking which may lead to injuries. In particular, texting while walking has been shown to induce significant alterations in gait patterns. This study aimed to assess whether changes in the main spatio-temporal parameters of gait when simultaneously engaged in texting on a smartphone and walking are different in older adults relative to young and middle- aged individuals. A total of 57 participants divided in three groups (19 older adults aged over 65, 19 young aged 20-40 and 19 middle-aged aged 41-64) were tested in two conditions: walking, and walking while texting on a smartphone. Spatio-temporal parameters of gait were assessed using a wearable accelerometer located on the lower back. The results show that texting induced similar reduction of gait speed, stride length and cadence in all groups. Slight (although significant) alterations of stance, swing and double support phases duration were found only for middle-aged participants. Such findings suggest that modifications of gait patterns due to texting seem unaffected by age, probably due to different perceptions of the cognitive complexity of the task and differential prioritization of its motor and cognitive aspects.


Author(s):  
Stephanie Studenski ◽  
Jessie VanSwearingen

Mobility is fundamental for living. As walking is the most common form of mobility for humans, disorders of gait impact multiple aspects of our existence, including independence, social function, health, and the ability to explore and understand ourselves in relation to the world. Because of the breadth of the impact of gait disorders, the intent of this chapter is to provide clinicians with an adequate background in the basic physiology and mechanics of normal gait, and an observational approach to recognize deviations from the normal pattern-types of gait abnormalities. While the type of gait disorder does not directly lead to the treatment prescription, we describe various approaches to the management (including assistive devices) and rehabilitation that may have potential to impact related gait abnormalities. Lastly, we highlight rising concerns and directions in the assessment and management of subclinical gait problems in walking.


Author(s):  
Benjamin M. Shapiro ◽  
L. Jaime Fitten

Older adults drive more miles than prior generations and have mobility and transportation needs that are central to independence and well-being. While older adult crash rates have decreased due to safety improvements, those aged 80 years and older have higher morbidity and mortality from crashes due to physical vulnerabilities. Normal ageing is associated with cognitive, motor, and sensory changes that prompt healthy older adults to modify their driving. Older adults use a wide range of potentially driver-impairing medications that increase accident risk. Glaucoma, visual field changes from strokes, and other impairments assessed in the Useful Field of View test can significantly increase crash risk. Moderate and advanced dementia results in unsafe driving due to the impact on ‘process skills’, resulting in the prevailing opinion that they should not drive. However, there is no appropriate screening instrument to assess driving safety among older adults.


2013 ◽  
Vol 29 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Smita Rao ◽  
Fred Dietz ◽  
H. John Yack

The purpose of this study was to compare estimates of gastrocnemius muscle length (GML) obtained using a segmented versus straight-line model in children. Kinematic data were acquired on eleven typically developing children as they walked under the following conditions: normal gait, crouch gait, equinus gait, and crouch with equinus gait. Maximum and minimum GML, and GML change were calculated using two models: straight-line and segmented. A two-way RMANOVA was used to compare GML characteristics. Results indicated that maximum GML and GML change during simulated pathological gait patterns were influenced by model used to calculate gastrocnemius muscle length (interaction: P = .004 and P = .026). Maximum GML was lower in the simulated gait patterns compared with normal gait (P < .001). Maximum GML was higher with the segmented model compared with the straight-line model (P = .030). Using either model, GML change in equinus gait and crouch with equinus gait was lower compared with normal gait (P < .001). Overall, minimum GML estimated with the segmented model was higher compared with the straight-line model (P < .01). The key findings of our study indicate that GML is significantly affected by both gait pattern and method of estimation. The GML estimates tended to be lower with the straight-line model versus the segmented model.


2017 ◽  
Vol 79 (3) ◽  
Author(s):  
Kuhelee Roy ◽  
Geelapaturu Subrahmanya Venkata Radha Krish Rao ◽  
Savarimuthu, Margret Anouncia

Records of cases involving neurological disorders often exhibit abnormalities in the gait pattern of an individual. As mentioned in various articles, the causes of various gait disorders can be attributed to neurological disorders. Hence analysis of gait abnormalities can be a key to predict the type of neurological disorders as a part of early diagnosis. A number of sensor-based measurements have aided towards quantifying the degree of abnormalities in a gait pattern. A shape oriented motion based approach has been proposed in this paper to envisage the task of classifying an abnormal gait pattern into one of the five types of gait viz. Parkinsonian, Scissor, Spastic, Steppage and Normal gait. The motion and shape features for two cases viz. right-leg-front and left-leg-front will be taken into account. Experimental results of application on real-time videos suggest the reliability of the proposed method.


2021 ◽  
Vol 11 (15) ◽  
pp. 7077
Author(s):  
Joel Marouvo ◽  
Filipa Sousa ◽  
Orlando Fernandes ◽  
Maria António Castro ◽  
Szczepan Paszkiel

Background: Foot postural alignment has been associated with altered gait pattern. This study aims to investigate gait kinematic differences in flatfoot subjects’ regarding all lower limb segments compared to neutral foot subjects. Methods: A total of 31 participants were recruited (age: 23.26 yo ± 4.43; height: 1.70 m ± 0.98; weight: 75.14 kg ± 14.94). A total of 15 subjects were integrated into the flatfoot group, and the remaining 16 were placed in the neutral foot group. All of the particpants were screened using the Navicular Drop Test and Resting Calcaneal Stance Position test to characterize each group, and results were submitted to gait analysis using a MOCAP system. Results: Significant kinematic differences between groups were found for the ankle joint dorsiflexion, abduction, and internal and external rotation (p < 0.05). Additionally, significant differences were found for the knee flexion, extension, abduction, and external rotation peak values (p < 0.001). Significant differences were also found for the hip flexion, extension, external rotation, pelvis rotation values (p < 0.02). Several amplitude differences were found concerning ankle abduction/adduction, knee flexion/extension and abduction/adduction, hip flexion/extension and rotation, and pelvis rotation (p < 0.01). Conclusion: Flatfooted subjects showed kinematic changes in their gait patterns. The impact on this condition on locomotion biomechanical aspects is clinically essential, and 3D gait biomechanical analysis use could be advantageous in the early detection of health impairments related to foot posture.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Slawomir Winiarski ◽  
Jadwiga Pietraszewska ◽  
Bogdan Pietraszewski

Normal gait pattern is the key component in the investigation of pathological gait patterns. In computer motion analysis there is a need to include data from participants with different somatic structures to develop a normative database or to limit the database results to a specific population. The aim of this study was to determine kinematic gait patterns for young, active women walking with low, preferred, and self-selected speeds with regard to their somatic characteristics. Laboratory-based gait analysis was performed on 1320 gait cycles taken from 20 young, active women walking with three different speeds. Comprehensive anthropometric measurements and descriptive statistics were used to describe spatiotemporal and angular variables at each walking condition. The results demonstrated some significant differences in young, active women walking between different speeds and compared to the literature. This suggests that there is a need to include data from participants with different somatic structures to develop a normative database or limit the database results to a specific population. Detailed linear and angular kinematic variables allow for proper adjustment of parameters depending on the gait speed of people with locomotion disorders.


2019 ◽  
Vol 18 (2) ◽  
pp. 34-48 ◽  
Author(s):  
J. Pietschmann ◽  
F. Geu Flores ◽  
T. Jöllenbeck

Abstract Even several years after total hip (THR) and total knee replacement (TKR) surgery patients frequently show deficient gait patterns leading to overloads and relieving postures on the contralateral side or in the spine. Gait training is, in these cases, an essential part of rehabilitation. The aim of this study was to compare different feedback methods during gait training after THR and TKR focusing, in particular, on auditory feedback via sonification. A total of 240 patients after THR and TKR were tested in a pre-post-test design during a 3-week rehabilitation period. Even though sonification did not show, statistically, a clear advantage over other feedback methods, it was well accepted by the patients and seemed to significantly change gait pattern during training. A sudden absence of sonification during training led to a rapid relapse into previous movement patterns, which highlights its effectiveness in breaking highly automated gait patterns. A frequent use of sonification during and after rehabilitation could, hence, reduce overloading after THR and TKR. This may soon be viable, since new technologies, such as inertial measurement units, allow for wearable joint angle measurement devices. Back to normal gait with sonification seems possible.


2022 ◽  
Vol 15 ◽  
Author(s):  
Kento Hirayama ◽  
Yohei Otaka ◽  
Taichi Kurayama ◽  
Toru Takahashi ◽  
Yutaka Tomita ◽  
...  

As humans, we constantly change our movement strategies to adapt to changes in physical functions and the external environment. We have to walk very slowly in situations with a high risk of falling, such as walking on slippery ice, carrying an overflowing cup of water, or muscle weakness owing to aging or motor deficit. However, previous studies have shown that a normal gait pattern at low speeds results in reduced efficiency and stability in comparison with those at a normal speed. Another possible strategy is to change the gait pattern from normal to step-to gait, in which the other foot is aligned with the first swing foot. However, the efficiency and stability of the step-to gait pattern at low speeds have not been investigated yet. Therefore, in this study, we compared the efficiency and stability of the normal and step-to gait patterns at intermediate, low, and very low speeds. Eleven healthy participants were asked to walk with a normal gait and step-to gait on a treadmill at five different speeds (i.e., 10, 20, 30, 40, and 60 m/min), ranging from very low to normal walking speed. The efficiency parameters (percent recovery and walk ratio) and stability parameters (center of mass lateral displacement) were analyzed from the motion capture data and then compared for the two gait patterns. The results suggested that step-to gait had a more efficient gait pattern at very low speeds of 10–30 m/min, with a larger percent recovery, and was more stable at 10–60 m/min in comparison with a normal gait. However, the efficiency of the normal gait was better than that of the step-to gait pattern at 60 m/min. Therefore, step-to gait is effective in improving gait efficiency and stability when faced with situations that force us to walk slowly or hinder quick walking because of muscle weakness owing to aging or motor deficit along with a high risk of falling.


Sign in / Sign up

Export Citation Format

Share Document