scholarly journals Cardiovascular and Metabolic Responses to Water Aerobics Exercise in Middle-Aged and Older Adults

2009 ◽  
Vol 6 (3) ◽  
pp. 333-338 ◽  
Author(s):  
Amy L. Nikolai ◽  
Brittany A. Novotny ◽  
Cortney L. Bohnen ◽  
Kathryn M. Schleis ◽  
Lance C. Dalleck

Background:The purposes of this study were (1) to assess the cardiovascular and metabolic responses to water aerobic exercise and (2) to determine if water aerobics exercise meets the American College of Sports Medicine (ACSM) guidelines for improving and maintaining car-diorespiratory fitness.Methods:Fourteen men and women—mean ± SD age 57.4 ± 7.6 y, height 171.3 ± 7.8 cm, weight 89.9 ± 13.9 kg, body-fat percentage 32.5% ± 5.8%, and maximal oxygen uptake (VO2max) 31.0 ± 8.3 mL · kg−1 · min−1—completed a maximal treadmill exercise test and a 50-min water aerobics session. Cardiovascular and metabolic data were collected via a portable calorimetric measurement system.Results:Mean exercise intensity was 43.4% of heart-rate reserve and 42.2% of maximal oxygen uptake reserve. Training intensity in metabolic equivalents was 4.26 ± 0.96. Total net energy expenditure for the exercise session was 249.1 ± 94.5 kcal/session.Conclusions:Results indicate that water aerobics is a feasible alternative to land-based exercise for middle-aged and older adults that fulfills the ACSM guidelines for improving and maintaining cardiorespiratory fitness.

Author(s):  
Damir Zubac ◽  
Vladimir Ivančev ◽  
Zoran Valić ◽  
Boštjan Šimunič

We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women. Novelty: Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment. No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.


2020 ◽  
Vol Volume 15 ◽  
pp. 2301-2311
Author(s):  
Pawel Macek ◽  
Malgorzata Terek-Derszniak ◽  
Malgorzata Biskup ◽  
Halina Krol ◽  
Jolanta Smok-Kalwat ◽  
...  

2021 ◽  
Vol 9 (18) ◽  
Author(s):  
Ian R. Villanueva ◽  
John C. Campbell ◽  
Serena M. Medina ◽  
Theresa M. Jorgensen ◽  
Shannon L. Wilson ◽  
...  

2009 ◽  
Vol 34 (6) ◽  
pp. 1017-1022 ◽  
Author(s):  
Kelly Pritchett ◽  
Philip Bishop ◽  
Robert Pritchett ◽  
Matt Green ◽  
Charlie Katica

To maximize training quality, athletes have sought nutritional supplements that optimize recovery. This study compared chocolate milk (CHOC) with a carbohydrate replacement beverage (CRB) as a recovery aid after intense exercise, regarding performance and muscle damage markers in trained cyclists. Ten regional-level cyclists and triathletes (maximal oxygen uptake 55.2 ± 7.2 mL·kg–1·min–1) completed a high-intensity intermittent exercise protocol, then 15–18 h later performed a performance trial at 85% of maximal oxygen uptake to exhaustion. Participants consumed 1.0 g carbohydrate·kg–1·h–1 of a randomly assigned isocaloric beverage (CHOC or CRB) after the first high-intensity intermittent exercise session. The same protocol was repeated 1 week later with the other beverage. A 1-way repeated measures analysis of variance revealed no significant difference (p = 0.91) between trials for time to exhaustion at 85% of maximal oxygen uptake (CHOC 13 ± 10.2 min, CRB 13.5 ± 8.9 min). The change in creatine kinase (CK) was significantly (p < 0.05) greater in the CRB trial than in the CHOC trial (increase CHOC 27.9 ± 134.8 U·L–1, CRB 211.9 ± 192.5 U·L–1), with differences not significant for CK levels before the second exercise session (CHOC 394.8 ± 166.1 U·L–1, CRB 489.1 ± 264.4 U·L–1) between the 2 trials. These findings indicate no difference between CHOC and this commercial beverage as potential recovery aids for cyclists between intense workouts.


2016 ◽  
Vol 97 (6) ◽  
pp. 1003-1012 ◽  
Author(s):  
Ashleigh E. Smith ◽  
Harrison Evans ◽  
Gaynor Parfitt ◽  
Roger Eston ◽  
Katia Ferrar

Sign in / Sign up

Export Citation Format

Share Document