scholarly journals Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production

2020 ◽  
Vol 6 (33) ◽  
pp. eaaz8447 ◽  
Author(s):  
D. W. Su ◽  
J. Ran ◽  
Z. W. Zhuang ◽  
C. Chen ◽  
S. Z. Qiao ◽  
...  

Catalysts with a single atom site allow highly tuning of the activity, stability, and reactivity of heterogeneous catalysts. Therefore, atomistic understanding of the pertinent mechanism is essential to simultaneously boost the intrinsic activity, site density, electron transport, and stability. Here, we report that atomically dispersed nickel (Ni) in zincblende cadmium–zinc sulfide quantum dots (ZCS QDs) delivers an efficient and durable photocatalytic performance for water splitting under sunlight. The finely tuned Ni atoms dispersed in ZCS QDs exhibit an ultrahigh photocatalytic H2 production activity of 18.87 mmol hour−1 g−1. It could be ascribed to the favorable surface engineering to achieve highly active sites of monovalent Ni(I) and the surface heterojunctions to reinforce the carrier separation owing to the suitable energy band structures, built-in electric field, and optimized surface H2 adsorption thermodynamics. This work demonstrates a synergistic regulation of the physicochemical properties of QDs for high-efficiency photocatalytic H2 production.

2018 ◽  
Vol 666 ◽  
pp. 28-33 ◽  
Author(s):  
Tizazu Abza ◽  
Francis Kofi Ampong ◽  
Fekadu Gashaw Hone ◽  
Robert Kwame Nkum ◽  
Francis Boakye

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1046 ◽  
Author(s):  
Zhilin Ji ◽  
Hongwei Wang ◽  
Xilin She

Heterojunction engineering has shown great potential in the field of photocatalysis to deal with environmental pollutants. The design and synthesis of heterojunction photocatalysts with high efficiency and stability still face great challenges. In this work, a novel CdS quantum dots (QDs) decorated 3D Bi2O2CO3 hierarchical nanoflower heterojunction photocatalyst (Bi2O2CO3/CdS QDs) was synthesized to investigate the photocatalytic Rhodamine B (RhB) degradation performance. CdS QDs were evenly distributed on the surface of the Bi2O2CO3 nanoflower. Bi2O2CO3/CdS QDs showed significantly enhanced photocatalytic RhB degradation performance compared with pristine Bi2O2CO3 and CdS QDs. The enhanced photocatalytic performance was attributed to the synergistic effect of hierarchical structure and heterojunction, which greatly increased the active sites of the reaction and the photogenerated carriers transfer.


2020 ◽  
Vol 13 (9) ◽  
pp. 2856-2863 ◽  
Author(s):  
Zhuoli Jiang ◽  
Tao Wang ◽  
Jiajing Pei ◽  
Huishan Shang ◽  
Danni Zhou ◽  
...  

We discover that an Sb single atom material consisting of Sb–N4 moieties anchored on N-doped carbon nanosheets can serve as a CO2RR catalyst to produce formate with high efficiency.


2017 ◽  
Vol 43 (3) ◽  
pp. 3057-3062 ◽  
Author(s):  
Mohammad Reza Loghman-Estarki ◽  
Ehsan Mohammad Sharifi

Author(s):  
Ayan Mukherjee ◽  
Partha Mitra

In recent years, ternary cadmium zinc sulfide (CdZnS) alloy compounds have been paid much attention in the fields of opto-electronics, particularly in photovoltaic devices. CdZnS thin films can be prepared by different techniques among which chemical methods have more advantages. Among different chemical method, Chemical Bath Deposition (CBD) is simple, low cost and widely applicable in industrial applications. In this chapter, we have discussed different methods of preparation of CdZnS thin film and their obtained properties. Also, the films are characterized by XRD, TEM, FESEM, EDAX, UV-Vis spectroscopy, etc. The properties of CdZnS gives insight of the properties of ternary thin film semiconductor and it will help to design semiconductor with tuneable properties for future applications in optoelectronic sector.


Author(s):  
John Meurig Thomas

Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed.


1997 ◽  
Vol 8 (1-3) ◽  
pp. 1043-1047 ◽  
Author(s):  
E. Cordoncillo ◽  
J. B. Carda ◽  
M. A. Tena ◽  
G. Monrós ◽  
P. Escribano

Sign in / Sign up

Export Citation Format

Share Document