scholarly journals Anatomy of digital contact tracing: Role of age, transmission setting, adoption and case detection

2021 ◽  
pp. eabd8750
Author(s):  
Jesús A. Moreno López ◽  
Beatriz Arregui García ◽  
Piotr Bentkowski ◽  
Livio Bioglio ◽  
Francesco Pinotti ◽  
...  

AbstractThe efficacy of digital contact tracing against COVID-19 epidemic is debated: smartphone penetration is limited in many countries, non-uniform across age groups, with low coverage among elderly, the most vulnerable to SARS-CoV-2. We developed an agent-based model to precise the impact of digital contact tracing and household isolation on COVID-19 transmission. The model, calibrated on French population, integrates demographic, contact-survey and epidemiological information to describe the risk factors for exposure and transmission of COVID-19. We explored realistic levels of case detection, app adoption, population immunity and transmissibility. Assuming a reproductive ratio R=2.6 and 50% detection of clinical cases, a ~20% app adoption reduces peak incidence by ~35%. With R=1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among adults, playing a central role in COVID-19 transmission, yields an indirect benefit for elderly. These results may inform the inclusion of digital contact tracing within a COVID-19 response plan.

Author(s):  
Jesús A. Moreno López ◽  
Beatriz Arregui-Garcĺa ◽  
Piotr Bentkowski ◽  
Livio Bioglio ◽  
Francesco Pinotti ◽  
...  

The efficacy of digital contact tracing against COVID-19 epidemic is debated: smartphone penetration is limited in many countries, non-uniform across age groups, with low coverage among elderly, the most vulnerable to SARS-CoV-2. We developed an agent-based model to precise the impact of digital contact tracing and household isolation on COVID-19 transmission. The model, calibrated on French population, integrates demographic, contact-survey and epidemiological information to describe the risk factors for exposure and transmission of COVID-19. We explored realistic levels of case detection, app adoption, population immunity and transmissibility. Assuming a reproductive ratio R=2.6 and 50% detection of clinical cases, a ~20% app adoption reduces peak incidence of ~36%. With R=1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among adults, playing a central role in COVID-19 transmission, yields an indirect benefit for elderly. These results may inform the inclusion of digital contact tracing within a COVID-19 response plan.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonatan Almagor ◽  
Stefano Picascia

AbstractA contact-tracing strategy has been deemed necessary to contain the spread of COVID-19 following the relaxation of lockdown measures. Using an agent-based model, we explore one of the technology-based strategies proposed, a contact-tracing smartphone app. The model simulates the spread of COVID-19 in a population of agents on an urban scale. Agents are heterogeneous in their characteristics and are linked in a multi-layered network representing the social structure—including households, friendships, employment and schools. We explore the interplay of various adoption rates of the contact-tracing app, different levels of testing capacity, and behavioural factors to assess the impact on the epidemic. Results suggest that a contact tracing app can contribute substantially to reducing infection rates in the population when accompanied by a sufficient testing capacity or when the testing policy prioritises symptomatic cases. As user rate increases, prevalence of infection decreases. With that, when symptomatic cases are not prioritised for testing, a high rate of app users can generate an extensive increase in the demand for testing, which, if not met with adequate supply, may render the app counterproductive. This points to the crucial role of an efficient testing policy and the necessity to upscale testing capacity.


2020 ◽  
Author(s):  
Jonatan Almagor ◽  
Stefano Picascia

Abstract A contact-tracing strategy has been deemed necessary to contain the spread of COVID-19 following the relaxation of lockdown measures. Using an agent-based model, we explore one of the technology-based strategies proposed, a contact-tracing smartphone app. The model simulates the spread of COVID-19 in a population of agents on an urban scale. Agents are heterogeneous in their characteristics and are linked in a multi-layered network representing the social structure - including households, friendships, employment and schools. We explore the interplay of various adoption rates of the contact-tracing app, different levels of testing capacity, and behavioural factors to assess the impact on the epidemic. Results suggest that a contact tracing app can contribute substantially to reducing infection rates in the population when accompanied by a sufficient testing capacity or when the testing policy prioritises symptomatic cases. As user rate increases, prevalence of infection decreases. With that, when symptomatic cases are not prioritised for testing, a high rate of app users can generate an extensive increase in the demand for testing, which, if not met with adequate supply, may render the app counterproductive. This points to the crucial role of an efficient testing policy and the necessity to upscale testing capacity.


There have been significant changes in the numbers, patterns, and circumstances of refugees and in the political landscape to support humanitarianism since the publication of the first edition of this collection. Like the first edition, this volume provides a multidisciplinary perspective on refugee health, tracing the health repercussions on individuals and populations from the drivers of forced mass movements of populations from situations of conflict and other disasters through to the process of resettlement in countries other than their countries of origin. Drawing on the expertise of academics, practitioners, and UN frontline experts, the collection covers three main aspects of refugee health: the concepts, definitions, and context from a human rights, humanitarianism, and social determinants of health perspective; the intersection of vulnerabilities across age groups and settings; and the ethical challenges for practitioners and researchers working with forcibly displaced populations seeking to resettle. The collection concludes with an analysis of the role of the media in shaping our perceptions of refugees and the impact on policy and access to care.


BMJ Open ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. e031598 ◽  
Author(s):  
Clare Meernik ◽  
Hannah M Baker ◽  
Sarah D Kowitt ◽  
Leah M Ranney ◽  
Adam O Goldstein

ObjectivesGiven the exponential increase in the use of e-cigarettes among younger age groups and in the growth in research on e-cigarette flavours, we conducted a systematic review examining the impact of non-menthol flavoured e-cigarettes on e-cigarette perceptions and use among youth and adults.DesignPubMed, Embase, PyscINFO and CINAHL were systematically searched for studies published and indexed through March 2018.Eligibility criteriaQuantitative observational and experimental studies that assessed the effect of non-menthol flavours in e-cigarettes on perceptions and use behaviours were included. Specific outcome measures assessed are appeal, reasons for use, risk perceptions, susceptibility, intention to try, initiation, preference, current use, quit intentions and cessation.Data extraction and synthesisThree authors independently extracted data related to the impact of flavours in tobacco products. Data from a previous review were then combined with those from the updated review for final analysis. Results were then grouped and analysed by outcome measure.ResultsThe review included 51 articles for synthesis, including 17 published up to 2016 and an additional 34 published between 2016 and 2018. Results indicate that non-menthol flavours in e-cigarettes decrease harm perceptions (five studies) and increase willingness to try and initiation of e-cigarettes (six studies). Among adults, e-cigarette flavours increase product appeal (seven studies) and are a primary reason many adults use the product (five studies). The role of flavoured e-cigarettes on smoking cessation remains unclear (six studies).ConclusionThis review provides summary data on the role of non-menthol flavours in e-cigarette perceptions and use. Consistent evidence shows that flavours attract both youth and adults to use e-cigarettes. Given the clear findings that such flavours increase product appeal, willingness to try and initiation among youth, banning non-menthol flavours in e-cigarettes may reduce youth e-cigarette use. Longitudinal research is needed to examine any role flavours may play in quit behaviours among adults.


Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Yihong Guan ◽  
Vera Adema ◽  
Courtney E Hershberger ◽  
...  

Decrease in DNA dioxygease activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general down-regulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1,665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, while 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was up-regulated in MDS and inversely correlated with TET2 expression in wild-type cases. While TET2 was reduced across all age-groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influenced the clinical phenotype of TET2-deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers.


2018 ◽  
Vol 67 (suppl_1) ◽  
pp. S103-S109
Author(s):  
Harish Verma ◽  
Zubairu Iliyasu ◽  
Kehinde T Craig ◽  
Natalie A Molodecky ◽  
Utibeabasi Urua ◽  
...  

Abstract Background Kano state has been a protracted reservoir of poliovirus in Nigeria. Immunity trends have been monitored through seroprevalence surveys since 2011. The survey in 2015 was, in addition, intended to assess the impact of use of inactivated poliovirus vaccine (IPV). Methods It was a health facility based seroprevalence survey. Eligible children aged 6-9, 12-15 and 19-22 months of age brought to the paediatrics outpatient department of Murtala Mohammad Specialist Hospital between 19 October and 6 November 2015, were screened for eligibility. Eligible children were enrolled after parental consent, history taken, physical examination conducted, and a blood sample collected to test for neutralizing antibody titres against the three poliovirus serotypes. Results Overall, 365 results were available in the three age groups. In the 6-9-month-old age group, the seroprevalence was 73% (95% confidence interval [CI] 64-80%), 83% (95% CI 75-88%), and 66% (95% CI 57-73%) for serotypes 1, 2, and 3, respectively. In the 12-15- and 19-22-month-old age groups, seroprevalence was higher but still remained <90% across serotypes. Seroprevalence to serotypes 1 and 3 in 2015 was similar to 2014; however, for serotype 2 there was a significant improvement. IPV received in supplemental immunization activities was found to be a significant predictor of seropositivity among 6-9-month-old infants for serotypes 1 and 2. Conclusions Seroprevalence for serotypes 1 and 3 remains low (<80%) in 6-9-month-olds. This poses a significant risk for poliovirus spread if reintroduced into the population. Efforts to strengthen immunization coverage are imperative to secure and sustain high population immunity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uta Düesberg ◽  
Julia Wosniok ◽  
Lutz Naehrlich ◽  
Patience Eschenhagen ◽  
Carsten Schwarz

Abstract Airway inflammation and chronic lung infections in cystic fibrosis (CF) patients are mostly caused by bacteria, e.g. Pseudomonas aeruginosa (PA). The role of fungi in the CF lung is still not well elucidated, but evidence for a harmful and complex role is getting stronger. The most common filamentous fungus in CF is Aspergillus fumigatus (AF). Age and continuous antibiotic treatment have been discussed as risk factors for AF colonisation but did not differentiate between transient and persistent AF colonisation. Also, the impact of co-colonisation of PA and AF on lung function is still under investigation. Data from patients with CF registered in the German Cystic Fibrosis Registry database in 2016 and 2017 were retrospectively analysed, involving descriptive and multivariate analysis to assess risk factors for transient or persistent AF colonisation. Age represented an independent risk factor for persistent AF colonisation. Prevalence was low in children less than ten years, highest in the middle age and getting lower in higher age (≥ 50 years). Continuous antibiotic lung treatment was significantly associated with AF prevalence in all age groups. CF patients with chronic PA infection had a lower lung function (FEV1%predicted), which was not influenced by an additional AF colonisation. AF colonisation without chronic PA infection, however, was significantly associated with a lower function, too. Older age up to 49 years and continuous antibiotic use were found to be the main risk factors for AF permanent colonisation. AF might be associated with decrease of lung function if not disguised by chronic PA infection.


2021 ◽  
Author(s):  
James Thompson ◽  
Stephen Wattam

AbstractCoronavirus disease 2019 (COVID-19) is an infectious disease of humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first case was identified in China in December 2019 the disease has spread worldwide, leading to an ongoing pandemic. In this article, we present a detailed agent-based model of COVID-19 in Luxembourg, and use it to estimate the impact, on cases and deaths, of interventions including testing, contact tracing, lockdown, curfew and vaccination.Our model is based on collation, with agents performing activities and moving between locations accordingly. The model is highly heterogeneous, featuring spatial clustering, over 2000 behavioural types and a 10 minute time resolution. The model is validated against COVID-19 clinical monitoring data collected in Luxembourg in 2020.Our model predicts far fewer cases and deaths than the equivalent equation-based SEIR model. In particular, with R0 = 2.45, the SEIR model infects 87% of the resident population while our agent-based model results, on average, in only around 23% of the resident population infected. Our simulations suggest that testing and contract tracing reduce cases substantially, but are much less effective at reducing deaths. Lockdowns appear very effective although costly, while the impact of an 11pm-6am curfew is relatively small. When vaccinating against a future outbreak, our results suggest that herd immunity can be achieved at relatively low levels, with substantial levels of protection achieved with only 30% of the population immune. When vaccinating in midst of an outbreak, the challenge is more difficult. In this context, we investigate the impact of vaccine efficacy, capacity, hesitancy and strategy.We conclude that, short of a permanent lockdown, vaccination is by far the most effective way to suppress and ultimately control the spread of COVID-19.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. e1003585
Author(s):  
Kyra H. Grantz ◽  
Elizabeth C. Lee ◽  
Lucy D’Agostino McGowan ◽  
Kyu Han Lee ◽  
C. Jessica E. Metcalf ◽  
...  

Background Test-trace-isolate programs are an essential part of Coronavirus Disease 2019 (COVID-19) control that offer a more targeted approach than many other nonpharmaceutical interventions. Effective use of such programs requires methods to estimate their current and anticipated impact. Methods and findings We present a mathematical modeling framework to evaluate the expected reductions in the reproductive number, R, from test-trace-isolate programs. This framework is implemented in a publicly available R package and an online application. We evaluated the effects of completeness in case detection and contact tracing and speed of isolation and quarantine using parameters consistent with COVID-19 transmission (R0: 2.5, generation time: 6.5 days). We show that R is most sensitive to changes in the proportion of cases detected in almost all scenarios, and other metrics have a reduced impact when case detection levels are low (<30%). Although test-trace-isolate programs can contribute substantially to reducing R, exceptional performance across all metrics is needed to bring R below one through test-trace-isolate alone, highlighting the need for comprehensive control strategies. Results from this model also indicate that metrics used to evaluate performance of test-trace-isolate, such as the proportion of identified infections among traced contacts, may be misleading. While estimates of the impact of test-trace-isolate are sensitive to assumptions about COVID-19 natural history and adherence to isolation and quarantine, our qualitative findings are robust across numerous sensitivity analyses. Conclusions Effective test-trace-isolate programs first need to be strong in the “test” component, as case detection underlies all other program activities. Even moderately effective test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic and can alleviate the need for more restrictive social distancing measures.


Sign in / Sign up

Export Citation Format

Share Document